简介:
简介:用领域分解方法检验传送对流散开问题。连续、分离的传送对流散开方程的表示;有点趋于增加的Schwarz算法;最佳的顺序错误估计结果。
简介:Klein-Gordon-Schroedinger(KGS)equationsareveryimportantinphysics.Somepapersstudiedtheirwell-posednessandnumericalsolution[1-4],andanotherworksinvestigatedtheexistenceofglobalattractorinR^nandΩ包含于R^n(n≤3)[5-6,11-12].Inthispaper,wediscussthedynamicalbehaviorwhenweapplyspectralmethodtofindnumericalapproximationforperiodicinitialvalueproblemofKGSequations.ItincludestheexistenceofapproximateattractorAN,theuppersemi-continuityonAwhichisaglobalattractorofinitialproblemandtheupperboundsofHausdorffandfractaldimensionsforAandAN,etc.
简介:InthispaperweprovethatthesolutionofexplicitdifferenceschemeforaclassofsemilinearparabolicequationsconvergestothesolutionofdifferenceschemesforthecorrespondingnonlinearellipticequationsinH1normast→∞.Wegetthelongtimeasymptoticbehaviorofthediscretesolutionswhichisinterestedincomparingtothecaseofcontinuoussolutions.
简介:在这份报纸,我们考虑充分分离的本地不连续的Galerkin方法,在第三命令前进的明确的Runge-Kutta时间被联合的地方。为一个维的时间依赖者有边界层的不可思议地使不安的问题,我们将证明结果的计划具有在本地稳定性的好行为不仅,而且有双optimal本地人错误估计。它是说,集中率在空间和时间是最佳的,并且截止子域的宽度也是将近最佳的,如果在各中间的舞台的边界条件以一个合适的方法被给。数字实验也被给。
简介:
简介:Inthisarticleweconsiderthefullydiscretetwo-levelfiniteelementGalerkinmethodforthetwo-dimensionalnonstationaryincompressibleNavier-Stokesequations.ThismethodconsistsindealingwiththefullydiscretenonlinearNavier-StokesproblemonacoarsemeshwithwidthHandthefullydiscretelineargeneralizedStokesproblemonafinemeshwithwidthh<