简介:Theproblemofrelatingtheeigervaluesofann×nHermitianmatrixtothoseofitsRayleigh-Ritzapproximationisconsidered.ThesameresidualboundforunitarilyinvariantnormsonHermilianmatricesisobtainedevenwithouttheorlhonormalandRayleigh-RitzassumptionsinStewartandSun’sbook[9,TheoremIV.4.14].TheresultcanalsobeextendedtonearlyHermitianmatrices.
简介:Itisknownthatnearlyuncoupledirreduciblestochasticmatricesmustpossesssub-dominanteigenvaluesnearλ=1.Itisnaturetoaskwhethertheconverseistrue.HortfielandMeyer[2]gaveapositiveanswer.TheyintroducedthenotionofuncouplingmeasureofStochasticmatrices.Forann×nstochasticmatrixPtheuncouplingmeasureofPisde-finedasσ(p)=min((sumfromi∈M1,j∈M1(Pij))+(sumfromi∈M1,j∈M1(Pij)),wheretheminimumistakenoverall
简介:LetHbetherealquaternionfield,CandRbethecomplexandrealfieldrespectively.ClearlyR(?)C(?)H.LetHm×ndenotethesetofallm×nmatricesoverH.IfA=(ars)∈Hm×n,thenthereexistA1andA2∈Cm×nsuchthatA=A1+A2j.LetACdenotethecomplexrepresentationofA,thatisthe2m×2ncomplexmatrixAc=((A1/A2)(-A2/A1))(see[1,2]).WedenotebyADtheDrazininverseofA∈Hm×nwhichistheuniquesolutionofthee-
简介:Inthispaper,weshallprovethatforanypositiveintergern,thereexistsnon-trivialcommutativefinitesemigroupofidempotentconsistingofsomen×nrealquaternionmatri-ceswhichislowersemilattice.Intheprocessofsolvingthisproblemweshallseethatmanypropertiesofgeneralizedinversesforcomplexmatricesstillholdforquaternionsma-
简介:Thereisawellestablishedmultifractaltheoryforself-similarmeasuresgeneratedbynon-overlappingcontractivesimilutudes.Ourreporthereconcernsthosewithoverlaps.Inparticularwerestrictourattentiontotheimportantclassesofself-similarmeasuresthathavematrixrepresentations.ThedimensionspectraandtheLq-spectraareanalyzedthroughtheproductofmatrices.Thereareabnormalbehaviorsonthemultifrac-talstructureandtheywillbediscussedindetail.
简介:LetAbeann×nrealsymmetricmatrix.Aiscalledcompletelypositive(denoteA∈CP_n)ifA=B’Bforsomem×nnonnegativematrixBwheremisanintegeranddenotes
简介:Inthispaper,wefirstshowthatagenericm×nFiedlermatrixmayhave2m-n-1kindsoffactorizationswhichareverycomplicatedwhenmismuchlargerthann.Inthiswork,twospecialcasesareexamined,oneisanm×nFiedlermatrixbeingfactoredasaproductof(m-n)Fiedlermatrices,theotherisanm×(m-2)Fiedlermatrix'sfactorization.Thenwediscusstherelationamongthenumbersofparametersofthreegenericm×n,n×pandm×pFiedlermatrices,andobtainsomeusefulresults.
简介:LetQbetherealquaternionfield.LetthesetofallmatricesA=(αij)n×mbeQn×mwhereαij∈Q,A+betheconjugatetransposeofA.Overalongperiodoftime,therehavebeenvariouskindsofdefinitionsofdeterminantovertherealquaternionfield,butallofthemarenotconcerningtheentriesofthematrixdirectly,thatis"undirectly".Fromthepointofviewhowthetheoryofdetermi-nantisalgebraicallydevelopedforskewfield,itmaybeworthwhiledefineddeterminant
简介:让F是有|F的一块地|≥3,李·平·胡昂电子邮件:lipingmath@sohu.com全文预览(小,大)[3]。苍白,Z.X.:重游的矩阵的几何学,代数学和组合数学,一个国际国会,ICAC'97,香港,由K.P编辑了。Shum等,Springer-Verlag,新加坡,1999,477486[4]。黄,L.P.:在任何部门上的hermitian矩阵的毗邻保存bijection地图与复杂物响。ActaMathematicaSinica,英语系列,23(1),95102(2007)[5]。黄,W.L.,Höfer,R.,苍白,Z.X.:毗邻保存地图砰对称并且hermitian矩阵。Aequations数学,67(12),132139(2004)[6]。黄,W.L.,苍白,Z.X.:矩形的矩阵的毗邻保存地图砰。Beiträgezur代数学undGeometrie,45(2),435446(2004)[7]。黄,L.P.:在戒指上的矩阵的几何学,科学出版社,北京,2006[8]。Šemrl,P.:在Hua矩形的矩阵的几何学的基本定理上。J。代数学,248,366380(2002)[9]。Cao,C.G.,黄,L.P.,唐,X.M.:保存在交替的矩阵上的等级2的添加剂地图。Afr。向国外散居J。数学,3(2),107113(2005)[10]。你,H.,唐,X.M.:在对称、交替的矩阵的空格的等级添加的添加剂preservers。线性代数学Appl,380,185198(2004)[11]。张,X.:在在域和应用程序上的交替的矩阵空格的等级的添加剂preservers。线性代数学Appl,397(1),325343(2005)[12]。张,X.:在在地上的交替的矩阵的空格的等级2的Linear/additivepreservers。线性代数学Appl,396(1),91102(2005)[13]。Havlicek,H.,Šemrl,P.:从几何学到invertibilitypreservers。Studia数学,174,99109(2006)
简介:Inthispaper,weintroducetheapplicationofrandommatricesinmathematicalphysicsincludingRiemann-Hilbertproblem,nuclearphysics,bigdata,imageprocessing,compressedsensingandsoon.WestartwiththeRiemannHilbertproblemandstatetherelationbetweentheprobabilitydistributionofnontrivialzerosandtheeigenvaluesoftherandommatrices.Throughtherandommatricestheory,wederivethedistributionofNeutronwidthandprobabilitydensitybetweenenergylevels.Inaddition,theapplicationofrandommatricesinquantumchromodynamicsandtwodimensionalEinsteingravityequationsisalsopresentinthispaper.
简介:WeuseMnforthesetofalln×nrealmatrices;(n)for{1,…,n};Snforthesymmetricgroupon〈n〉;A[α]α∈
简介:isgainedbydeletingthekthrowandthekthcolumn(k=1,2,...,n)fromTn.Weputfor-wardaninverseeigenvalueproblemtobethat:Ifwedon’tknowthematrixT1,n,butweknowalleigenvaluesofmatrixT1,k-1,alleigenvaluesofmatrixTk+1,k,andalleigenvaluesofmatrixT1,ncouldweconstructthematrixT1,n.Letμ1,μ2,…,μk-1,μk,μk+1,…,μn-1,
简介:Inthispaper,somepropertiesofcentrosymmetricmatrices,whichoftenappearintheconstructionoforthonormalwaveletbasisinwaveletanalysis,areinvestigated.Asanapplication,analgorithmwhichistightlyrelatedtoaso-calledLawtonmatrixispresented.Inthisalgorithm,aboutonlyhalfofmemoryunitsarerequiredandquarterofcomputationalcostisneededbyexploitingthepropertyoftheLawtonmatrixandusingacompressiontechnique,itiscomparedtoonefortheoriginalLawtonmatrix.