学科分类
/ 13
256 个结果
  • 简介:名列亚洲富豪首位的李嘉诚,有他的人生理财三秘诀,值得人们记取。三十以后重理财。20岁以前,所有的钱都是靠双手勤劳换来,20至30岁之间是努力赚钱和存钱的时候,30岁以后,投资理财的重要性逐渐提高,到中年时赚的钱已经不重要。

  • 标签: 李嘉诚 冠状动脉粥样硬化 黑木耳 维生素C 投资理财 酸类物质
  • 简介:我们称一个定义在Banach空间E上的连续凸函数f具有Frechet可微性质(FDP),如果E上的每个实值凸函数g≤f均在E的一个稠密的Gδ-子集上Frechet可微.本文主要证明了:对任何Banach空间E,均存在一个局部凸的相容拓扑p使得1)(E,p)是Hausdorff局部凸空间;2)E上的每个范数连续具有FDP的凸函数均是p-连续的;3)每个p-连续的凸函数均具有FDP;4)p等价某个范数拓扑当且仅当E是Asplund空间.

  • 标签: Frechet可微性 BANACH空间 局部凸空间 凸函数 范数 P-连续
  • 简介:社会是企业的依托,企业是社会的细胞,企业在社会经济发展中的地位和作用日益增强。能否有效地履行社会责任,是现代社会对公司治理提出的新挑战,关系到企业和社会的可持续发展,已成为每个企业都必须深思的一个重大问题。根据企业社会责任和社会可持续发展的战略要求,企业理财目标也必须与履行社会责任、实现可持续发展相一致。

  • 标签: 社会责任成本 企业可持续发展 企业理财目标 企业社会责任 企业价值最大化 社会责任会计
  • 简介:本文给出并证明了若干个子空间的并以及两个子空间的基构成子空间的充要条件,从而本质地揭示了除子空间的交与和是构造新的予空间的方法外,集合的其它运算不能构造新的子空间,最后分析了子空间直和的两种不同定义的优缺点,指出了张禾瑞教材中子空间直和定义推广时应注意的一个问题。

  • 标签: 子空间 空间构造 线性空间 直和 三维几何空间
  • 简介:本文旨在给出Banach空间值Hardy—Lorentz鞅空间的共轭空间的完全刻画.首先,对B值鞅引入了一类新的广义Lipschitz鞅空间及“原子鞅”的概念;其次,对B值Hardy-Lorentz鞅空间建立了“原子鞅”的分解定理;最后,以此为工具证明了其共轭空间是广义Lipschitz鞅空间.所得结论将已有的相应结果由实值鞅推广到Banach空间值鞅的情况.

  • 标签: BANACH空间值鞅 Hardy-Lorentz空间 原子分解 共轭空间
  • 简介:本文以自然的方式定义了从Z-空间X到Z-空间Y的有界线性算子的和以及它们的敷乘,从而得到了与赋范空间的对偶空间理论类似的一系列结论.

  • 标签: Z-空间 有界线性算子 对偶空间定理
  • 简介:术文讨论了加权Bergman空间到Zygmund空间(小Zygmund空间)的广义复合算子Cφ^h的有界性和紧性特征,得到了以下约结果:(1)Cφ^h是加权Rergman空间到Zygmund空间的有界算子和紧算子的充要条件;(2)Cφ^h是加权Bergman空间到小Zygmund空间的有界算子和紧算子的充要条件.

  • 标签: 加权BERGMAN空间 ZYGMUND空间 小Zygmund空间 广义复合算子
  • 简介:本文使用非常极凸的定义,证明了非常极凸和非常光滑是互为对偶空间且严格介于弱k凸和非常凸之间的空间,最后得到了非常极凸的一些特征.

  • 标签: 非常极凸 弱k凸 非常凸
  • 简介:UMD空间是被广泛研究的一类新型的Banach空间,它具有一系列良好的几何性质与分析性质并且与向量值调和分析、随机分析有着广泛深刻的联系.本文扼要介绍这类空间的有关问题,主要是以下几个方面:①引言(定义与产生背景);②UMD空间的几何特征与分析特征;③此类空间的例;④在向量值调和分析理论中的应用;⑤关于鞅不等式的最优系数问题.

  • 标签: Banach空间理论 UMD空间 鞅论 向量值调和分析 最优不等式
  • 简介:引入了Banach空间的局部k-drop凸性质,研究了k-drop凸与局部k-drop凸的一些性质以及两者之间的关系,并用单位球的切片统一而简洁地处理了这两个性质.

  • 标签: k-drop凸 局部k-drop凸 k强凸
  • 简介:引入了概率准度量族空间、概率准范数族空间、随机准度量族空间和随机准范数族空间的概念,包括了现有的各种相关空间类[1~11](特别是[8,9])作为特殊情况,建立了统一的空间体系.同时,我们研究了所引入的一般空间类的—些性质和拓扑结构.

  • 标签: 范数 概率 空间 随机 度量 性质
  • 简介:设φ是一个正则函数,α~p(φ)(0

    ∞)是单位圆盘上带权φ~p(1.1)/(1-1.1~2)的调和勒贝格空间。我们得到了α~p(φ)的自共轭性,即当u∈α~p(φ)时它的调和共轭∈α~p(φ).

  • 标签: 空间 自共轭 正则函数 调和共轭 湖南 勒贝格