学科分类
/ 1
19 个结果
  • 简介:正交变换的若干应用谢蜀忠(天津职业技术师院)本文就正交变换在数学教学中的若干应用进行讨论。欧氏空间V中,保持向量长度不变的线性变换是正交变换。即任意的α,β∈V,V中的线性变换A有(A,Aβ)=(α,β)则称人为正交变换。正交变换是欧氏空间到自身的同...

  • 标签: 正交变换 标准正交基 线性变换 欧氏空间 对称矩阵 正交矩阵
  • 简介:一个线性无关的向量组,总有一个正交化的向量组与之等价。为寻求这个等价的正交化向量组,一般都是应用Schmjdt正交化方法。Schmidt正交化方法:设α1,α2,…,αn是一组线性无关的向量,令

  • 标签: 正交化 SCHMIDT 线性无关 满秩矩阵 矩阵解 上三角
  • 简介:利用对称内积的Schmidt正交化方法证明了各阶主子式不为零对称阵的LDLT分解.引入两个向量组关于弱内积广义正交的概念,并构造了将两组含相同个数向量的线性无关组化为广义正交组的广义Schmidt正交化方法.最后应用这一方法证明了各阶主子式不为零矩阵的LDU分解及一些相关的结果.

  • 标签: LDL^T分解 LDU分解 广义正交组 广义Schmidt正交化方法
  • 简介:本文利用广义正交(“⊥”)这一工具,给出了在不自反的Banach空间中多值算子P为集值度量投影PL的充要条件是(i)P^-1(O)=L(⊥),(ii)∨x∈X,∨y∈L,P(x+y)=P(z)+Y,我们的结果推广了文[2]的在自反空间中且P为单值度量投影的相应结论;还得到了L(⊥)为线性子空间的充要条件是PL为有界线性算子;进而得到了L广义正交拓扑可补的充要条件是PL为有界线性算子,丰富了文[1,9]的结论.

  • 标签: BANACH空间 广义正交 广义正交可补 度量投影
  • 简介:基于Schmidt正交化过程获得了一种计算逆矩阵的新方法.对于可逆矩阵A,有Q=MA,其中Q是酉矩阵,M是下三角矩阵.本文直接从Schmidt规范正交化出发,获得下三角矩阵M的计算公式,从而求得逆矩阵A-1=QHM=AHMTM.

  • 标签: Schmidt正交化 逆矩阵 快速计算法
  • 简介:用矩阵表示图像,构造正交均值差分变换矩阵,对原始图像进行正交变换,进一步取阈值,仅存储绝对值大于阈值的系数,获得数据压缩.解压缩过程只需作逆均值差分变换.最后将该算法分别应用于灰度和彩色图像的压缩处理,结果验证了算法的有效性.由于算法中所有变换都通过矩阵运算处理,且意义直观明了,故该算法是大学线性代数教学中一个非常好的应用案例.

  • 标签: 图像压缩 正交变换 均值 差分
  • 简介:在本文中,我们证明了对一个反Krylov矩阵作QR分解后,利用得到的正交矩阵可以将一个具有互异特征值的对称矩阵转化为一个半可分矩阵的形式,这个结果表明了反Krylov矩阵与半可分矩阵之间的联系.另外,我们还证明了这类对称半可分矩阵在QR达代下矩阵结构保持不变性.

  • 标签: 反Krylov矩阵 半可分矩阵 特征值 QR分解
  • 简介:设G是一个具有顶点集V(G)和边集E(G)的图。设g和f是定义在V(G)上的两个整数值函数,使得g(x)≤f(x)对所有的点x∈V(G)都成立。结果G是一个(mg+n,mf-n)-图,1≤n

  • 标签: 因子分解 正交 整数值函数
  • 简介:利用提升格式,构造了CDF型的双正交小波,并探讨了提升算子S的选择规律,最后给出构造实例,结果表明:这种构造方法比传统的构造方法简单、易行,而且选择不同的提升算子S,可以得到不同性质的双正交小波,充分显示出这种构造方法的实用性和广泛性。

  • 标签: 提升格式 多分辨分析 提升算子 双正交小波
  • 简介:设G是一个图,具有顶点集V(G)和边集E(G).设g和f是定义在V(G)上的整数值函数且对每个x∈y(G)有g(x)≤f(x).本文证明了如下的结果:若G是一个(mg+kr,mf-kr)一图,且对每个x∈V(G)有g(x)≥r-1,H和G的任意给定的有kr条边的子图,则G中含有一个子图R,使R有(g,f)-因子分解r-正交于H,其中m,k和r是正整数且k〈m.

  • 标签: 因子 (G F)-因子分解 正交因子分解 因子分解 子图 正交
  • 简介:应用数域上(m,l)幂等矩阵与m幂等矩阵的关系,得到了数域上(m,l)幂等矩阵的l次方幂的代数等价、相似和特征多项式相等是互为确定的结论,由此推广改进了数域上m幂等矩阵的代数等价与正交性的相应结果.

  • 标签: (m l)幂等矩阵 代数等价 矩阵相似 特征多项式
  • 简介:本文利用非线性各向异性扩散方程结合小波变换提出一种图象去噪的方法。首先对图像进行离散小波变换,然后对其各个分量分别用各向异性的方法实现去噪。实验结果表明,该方法能够较好的去除噪声的同时,很好的保留边缘信息。

  • 标签: 小波变换 偏微分方程 图像去噪
  • 简介:通过使用Hammastein积分方程和锥上的不动点定理对于一类含时间奇异性的二阶非线性Dirich.1et问题建立了三个局部存在定理.主要结论表明只要非线性项的主要部分在某些有界集合上的高度是适当的此问题具有n个正解,其中竹是一个任意的自然数.

  • 标签: 非线性常微分方程 边值问题 正解 存在性 多解性