简介:研究了平均非扩张型映射T:‖Tx-Ty‖≤a‖x-y‖+b‖x-Tx‖+c‖x-Ty‖,(x,y∈K,a,b,c≥0,a+b+c≤1)的公共不动点的存在性和唯一性.得到平均非扩张型映射T1和T2满足T1T2=T2T1,则T1T2存在唯一的不动点,并且T1和T2存在唯一的公共不动点.本文结果是近期相关文献结果的推广.
简介:在自反、严格凸、光滑的Banach空间中,设计了一种修正的混合投影迭代算法用来构造平衡问题与拟φ-渐近非扩张映像的不动点问题的公共元,并利用广义投影算子和K-K性质证明了此迭代算法生成的序列强收敛于这两个问题的公共元.所得结果是近期相关结果的改进和推广.
简介:研究了超凸度量空间中非扩张映象不动点的逼近问题,得到了具误差的Ishikawa迭代序列收敛到不动点的一个充要条件.
简介:研究一致凸Banach空间中集值渐近拟非扩张映射的关于有限步迭代序列逼近公共不动点的充分必要条件,并在此条件下,证明了该序列收敛到公共不动点的一些强收敛定理,所得结果是单值映射情形的推广和发展.
简介:本文研究两类稳定性定理.对LaSalle不变原理做更加合理的改进.研究了Lyapunov直接法,得到了改进的比较原理,并加以证明,最后应用到实例中.