简介:研究了平均非扩张型映射T:‖Tx-Ty‖≤a‖x-y‖+b‖x-Tx‖+c‖x-Ty‖,(x,y∈K,a,b,c≥0,a+b+c≤1)的公共不动点的存在性和唯一性.得到平均非扩张型映射T1和T2满足T1T2=T2T1,则T1T2存在唯一的不动点,并且T1和T2存在唯一的公共不动点.本文结果是近期相关文献结果的推广.
简介:在自反、严格凸、光滑的Banach空间中,设计了一种修正的混合投影迭代算法用来构造平衡问题与拟φ-渐近非扩张映像的不动点问题的公共元,并利用广义投影算子和K-K性质证明了此迭代算法生成的序列强收敛于这两个问题的公共元.所得结果是近期相关结果的改进和推广.
简介:研究了超凸度量空间中非扩张映象不动点的逼近问题,得到了具误差的Ishikawa迭代序列收敛到不动点的一个充要条件.
简介:研究一致凸Banach空间中集值渐近拟非扩张映射的关于有限步迭代序列逼近公共不动点的充分必要条件,并在此条件下,证明了该序列收敛到公共不动点的一些强收敛定理,所得结果是单值映射情形的推广和发展.
简介:在一致凸Banach空间上,研究了半紧的非扩张压缩映象的修正Ishikawasa三重迭代序列的强收敛问题,建立并证明了若干强收敛定理,推广了Mann和Ishikawa的迭代方法,改进和发展了Xu和贾如鹏等作者的主要结果.
简介:在一致凸Banach空间上,研究了半紧的非扩张压缩映象||Tx-Ty||≤||x-y||的Ishikawa型的三重迭代序列的收敛性问题,建立并证明了带误差的Ishikawa三重迭代逼近收敛定理,从而独特的推广了Mann和Ishikawa迭代方法,改进和发展了文献[1]-[7]的主要结果.