简介:一、单项选择题(每小题5分,共50分)1.已知点(3,-4),那么它到x轴的距离为( )(A)3 (B)4 (C)-3 (D)52.如果k>b>0,那么直线y=kx+b的图象必不经过( )(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限3.函数y=kx的图象经过点(-2,2),那么直线y=kx-k的图象经过( )(A)第二、三、四象限 (B)第一、二、三象限(C)第一、二、四象限 (D)第一、三、四象限4.满足b<0,c<0的二次函数y=x2+bx+c的图象大致是( ) 5.两圆圆心都在y轴上,且两圆相交于A、B两点,若A点坐标为(2,2),则B点坐标为( )(A)(2,-2)
简介:一、一元选择题(每小题3分,共45分)1.-|-2|的倒数是( )(A)-2 (B)-12 (C)12 (D)22.(-a3)2÷(-a)的运算结果是( )(A)a6 (B)-a6 (C)a5 (D)-a53.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是( )(A)三角形 (B)四边形(C)五边形 (D)六边形4.如果实数x、y满足|x+2|+(x-12y)2=0,那么xy的值等于( )(A)-116 (B)116 (C)-18 (D)185.当锐角A>30°,cosA的值( )(A)小于12 (B)小于32(C)大于12 (D)大于326.要使分式|x|-22x2-x-6
简介:说明 此组题主要训练对三角形一章的知识、方法的灵活应用能力. 一、选择题(每小题3分,共24分)1.定理:三角形的两边之和大于第三边的知识依据是( ).(A)两边差小于第三边(B)两点之间,线段最短(C)两点间的距离的定义(D)两点确定一条直线2.证明等腰三角形的性质定理的辅助线不能是( ).(A)顶角的平分线 (B)底边上的中线(C)腰上的中线 (D)底边上的高3.到三角形的三边距离相等的点是三角形的( ).(A)三条高的交点(B)三条中线的交点(C)三条角平分线的交点(D)三边的中垂线的交点图C-14.如图C-1,△ABC中,AB=AC,∠C=2∠A,BD是角平分线,则图中的等腰三角形
简介:说明 此组题是几何能力训练一的补充,主要训练识图、画图、计算、逻辑推理能力. 一、填空(1~6小题各3分,7~10小题各5分,共38分)1.目测图中全等的三角形可能有对.(如图C-16)图C-16图C-172.如图C-17,AB=AC,点D、F是∠BAC的平分线上两点,AD、DF满足关系时,S△ADC=S△BDF.3.画图,并回答.从△ABC的顶点B作∠A的平分线的垂线段BD,垂足为D,过点D作DE∥AC,交AB于点E.图中的直角三角形是,等腰三角形有.图C-184.如图C-18,AD∥BC,BE平分∠ABC,交AD于E.AD=8cm,AB=3cm,则ED=cm.5.如图C-19,△ABC中
简介:一、填空题(12分)1.如果x2+ax+9=(x-3)2,则a=,5x2-3x+b=(5x+2)(x-1),则b=.2.当x时,分式-xx2+5的值是正数,当x=时,13-x=3.3.已知方程(a+3)x=3,当a时,方程有唯一解,当a时,它无解.4.已知等式2a-bn+a=n,当n≠2时,a=.5.方程1x+2-3+xx+2=0的增根是,化简4x2-14x2+4x-3=.6.计算1x+2-2x+5x+2=.二、选择题(15分)1.下列分解因式错误的是( ).(A)x4-8x2+16=(x+2)2(x-2)2(B)a4-1=(a2+1)(a+1)(a-1)(C)(a2+b2)2-4a2b2=(
简介:一、政府绩效审计产生的历史背景及内涵绩效审计(performanceaudit)在西方国家产生较早,但真正兴起是在第二次世界大战后。20世纪40年代以后,随着国家公共开支的大幅度增长,经济资源与需求矛盾的日益尖锐,纳税规模的扩大以及人们民主意识的提高,纳税人对提高公营部门支出的效益和明确支出经济责任的要求越来越高,许多国家开始关注资源使用的效率和效果。"公共性"的不断觉醒,要求审计部门应适应公共经济责任发展的需要,不仅对政府经济活动的合规性进行严格监督,而且要对政府经济活动的合理性、有效性实施监督。政府绩效审计正是在这种背景下产生并得到发展的。