简介:网页等级(PageRank)是一个反映网页重要性的数值.当一个网页A连向另一个网页B的时候,A就等于给网页B投了有效的一票.一个网页接受的票越多,这个网页就越重要.同时,给网页B投票的网页本身的等级也决定了该选票的重要性.Google通过每张选票本身重要性和得票多少来计算一个网页的级别(重要性).Google的核心就是计算每一个网页的等级(即PageRank).本文主要介绍Google矩阵的定义和产生,解释PageRank的一些相关概念,证明Google矩阵及其第二特征值具有的一些性质,并简要介绍这些性质的应用.
简介:一、启发提问图7-461.如图7-46,圆心到直线l的距离就是半径OA,由上节知识可知直线l与⊙O,这里的直线l有两个限制条件,它们是,.2.圆的切线垂直于经过切点的.3.切线性质定理的两个推论的题设和结论分别是什么?4.切线的性质定理及其两个推论的题设和结论有什么关系?二、例题示范例1 已知:如图7-47,点C是⊙O的AB的中点,CD∥AB.求证:CD是⊙O的切线.分析 要证CD是⊙O的切线,根据判定定理只需要连结OC,证明OC⊥CD即可;用垂径定理由已知条件可知OC⊥AB,而AB∥CD,因此问题就得以解决.证明(略).图7-47 图7-48 例2 如图7-48,已知ABCD的
简介:研究Kac方程的初值问题.证明了该类方程存在唯一的全局分布解.并且使用一种新的线性化方法证明了该类方程的解具有相应的多项式衰减性.
简介:利用实赋范线性空间E上非零连续线性泛函f,确定了E上半序关系和锥Pf,证明了锥Pf的几个性质,给出了Hilbert空间中Pf的对偶锥的表现形式及由Pf确定的Hilbert投影距离与Thompson距离.
简介:对算子T的Bishop性质(β)进行“局部化”,得到T的新的集值函数A(T),E1(T),E2(T),C1(T),Cx(T),并讨论它们之间的相互关系以及它们与T的谱结构的关系.借助这些新概念我们得到算子的可分解性与次可分解性的新的充要条件和谱特征.