简介:摘要:电力企业在经过长期发展已经实现了稳定持久的电力供应,并且在现阶段我国电力企业逐渐增多,电力市场也最开始的卖方市场,逐渐转变成了卖方市场,为保证电力企业能具有良好的发展前景以及发展规模,也就需要电力企业能通过有效的方式做好市场营销。而在目前的电力市场之中还存在着较多的问题影响着电力企业的营销效果。针对电力市场随机性、多变量和时变性的特点导致电力客户服务需求预测值不准确的问题,提出了一种基于大数据分析的电力客户服务需求预测方法。该方法依托于贵州地区的智能电网大数据,从区域商业价值和区域宏观经济角度来采集数据并通过挖掘其中的关联信息,建立了电力客户的细分模型;并在客户细分模型的基础上,使用BP神经网络算法建立了电力客户的需求预测模型。
简介:摘要:大数据时代已到来,数据量大且种类繁多,而信息相对匮乏。面对爆发式增长的数据,人们的理解能力远远跟不上数据增长的步伐,如果没有强有力的工具支撑,将很难发现数据中蕴含的信息。因此,我们采用数据挖掘和数据分析技术的目的就是为了实现数据到价值的转换。
简介:摘要:在大数据环境下,数据挖掘算法的优化变得至关重要。随着数据量的爆炸性增长,传统的数据挖掘算法面临着效率和性能的挑战。同时,云计算提供了弹性扩展的计算资源,为数据挖掘算法提供了强大的支撑。此外,内存优化和存储策略,如使用列存储和数据压缩,可以在不牺牲性能的前提下降低数据处理的内存需求。然而,大数据挖掘算法优化也面临着一系列挑战。数据安全和隐私保护是首要问题,尤其是在医疗或金融领域,数据的敏感性要求在算法设计时必须考虑数据加密和匿名化技术。同时,随着AI的普及,算法的可解释性和透明度受到关注,如使用可解释的机器学习模型以增强用户对预测结果的理解和信任。面对这些挑战,研究者和实践者需要探索新的算法结构和理论,以适应大数据环境并满足社会的期望。总结来说,大数据环境下的数据挖掘算法优化是一个持续演进的领域,需要综合考虑计算效率、数据安全、模型解释性等多个维度。只有这样,我们才能充分利用大数据的潜力,推动科学、商业和社会的持续创新。
简介:摘要:在大数据环境下,数据挖掘算法的优化变得至关重要。随着数据量的爆炸性增长,传统的数据挖掘算法面临着效率和性能的挑战。同时,云计算提供了弹性扩展的计算资源,为数据挖掘算法提供了强大的支撑。此外,内存优化和存储策略,如使用列存储和数据压缩,可以在不牺牲性能的前提下降低数据处理的内存需求。然而,大数据挖掘算法优化也面临着一系列挑战。数据安全和隐私保护是首要问题,尤其是在医疗或金融领域,数据的敏感性要求在算法设计时必须考虑数据加密和匿名化技术。同时,随着AI的普及,算法的可解释性和透明度受到关注,如使用可解释的机器学习模型以增强用户对预测结果的理解和信任。面对这些挑战,研究者和实践者需要探索新的算法结构和理论,以适应大数据环境并满足社会的期望。总结来说,大数据环境下的数据挖掘算法优化是一个持续演进的领域,需要综合考虑计算效率、数据安全、模型解释性等多个维度。只有这样,我们才能充分利用大数据的潜力,推动科学、商业和社会的持续创新。
简介:摘要:针对工业物联网数据采集存在的设备种类繁多、通信协议多样、复杂规约嵌套等问题,设计了基于云技术的工业物联网数据采集平台。平台对不同厂家设备采集属性进行归类,形成设备物模型,实现设备属性复用,减少了设备属性配置工作;通过构建多层嵌套的复杂规约解析树,实现了多规约嵌套报文数据解析。该平台在某能源集团中获得实际应用,数据召测解析成功率达99.992%,可取代场站布设的现场终端或采集服务器完成云上数据汇聚和解析,实现硬件软件化,减少企业投资运营成本,可广泛应用于工业物联网数据采集系统的新建、升级和改造工程,为工业物联网数据采集提供了一种可供参考的解决方案。
简介:摘要:近年来我国铁路建设发展迅速,运营里程逐年攀升,由此带来的经济和战略意义不言而喻,但同时也加剧了工务部门的负担,使检修作业量急剧增加。在这种现状下,工务部门对提高作业效率、优化作业模式和信息化建设都提出了更高的要求。我国铁路系统正在进入大数据的时代,每天多个业务系统将产生海量数据,且数据量逐年增加。近年来,中国铁路郑州局集团公司普速铁路故障点检测手段多样,包括晃车仪、轨检小车、人工添乘等。工务各种监测数据体量庞大,数据类型复杂,业务查询频繁,对后续海量数据的深度挖掘带来了一定困难。因此,急需建立工务数据平台,优化工务各种检测监测数据的存储、分析、共享流程。