刘俊
(遂宁市船山区唐家乡初级中学校遂宁629000)
【内容摘要】:思维能力就是人们在感性认识的基础上,运用比较、分析、综合、归纳、演绎等基本方法去形成概念并进行推理和判断。如何在数学教学中培养学生的思维能力,养成良好思维品质是教学改革的一个重要课题
【关键词】:数学思维能力培养
现代教育观点认为,数学教学是数学活动的教学,即思维活动的教学。就是说在数学教学中,除了要使学生掌握基础知识、基本技能,同时还要注意培养学生的思维能力。所谓思维能力就是人们在感性认识的基础上,运用比较、分析、综合、归纳、演绎等基本方法去形成概念并进行推理和判断。如何在数学教学中培养学生的思维能力,养成良好思维品质是教学改革的一个重要课题。本文就初中学生数学思维能力的培养谈谈自己在教学中的几点尝试。
一、数学思维与数学思维能力的含义
数学思维是对数学对象(空间形式、数量关系、结构关系等)的本质属性和内部规律的间接反映,并按照一般思维规律认识数学内容的理性活动。
数学思维能力主要包括四个方面的内容:1、会观察、实验、比较、猜想、分析、综合、抽象和概括;2、会用归纳、演绎和类比进行推理;3、会合乎逻辑地、准确地阐述自己的思想和观点;4、能运用数学概念、思想和方法,辨明数学关系,形成良好的思维品质。
新课标指出:义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律。数学在提高人的推理能力、抽象能力、想象力和创造力等方面有着独特的作用。新课标确立了知识与技能、过程与方法、情感态度与价值观三位一体的课程目标,将素质教育的理念体现在课程标准之中。通过引导学生主动参与、亲身实践、独立思考、合作探究,从而实现向学习方式的转变,发展学生搜集和处理信息的能力、获取新知识的能力、分析解决问题的能力,以及交流与合作的能力。
二、要善于调动学生内在的思维能力
培养兴趣,促进思维。兴趣是最好的老师,也是每个学生自觉求知的内动力。教师要精心设计每节课,要使每节课形象、生动,有意创造动人的情境,设置诱人的悬念,激发学生思维的火花和求知的欲望,并使同学们认识到数学在四化建设中的重要地位和作用。经常指导学生运用已学的数学知识和方法解释自己所熟悉的实际问题。新教材中安排的“想一想”、“读一读”不仅能扩大知识面,还能提高同学的学习兴趣,是比较受欢迎的题材。适当分段,分散难点,创造条件让学生乐于思维。如列方程解应用题是学生普遍感到困难的内容之一,主要困难在于掌握不好用代数方法分析问题的思路,习惯用小学的算术解法,找不出等量关系,列不出方程。
因此,我在教列代数式时有意识地为列方程的教学作一些准备工作,启发同学从错综复杂的数量关系中去寻找已知与未知之间的内在联系。通过画草图列表,配以一定数量的例题和习题,使同学们能逐步寻找出等量关系,列出方程。并在此基础进行提高,指出同一题目由于思路不一样,可列出不同的方程。这样大部分同学都能较顺利地列出方程,碰到难题也会进行积极的分析思维。
鼓励学生独立思维。初中生受经验思维的影响,思维容易雷同,缺乏探索精神。因而要多鼓励学生敢于发表不同的见解。
三、教会学生思维的方法
孔子说:“学而不思则罔,思而不学则殆”。恰当地示明学思关系,才能取得良好的效果。在数学学习中要使学生思维活跃,就要教会学生分析问题的基本方法,这样有利于培养学生的正确思维方式。
要学生善于思维,必须重视基础知识和基本技能的学习,没有扎实的双基,思维能力是得不到提高的。数学概念、定理是推理论证和运算的基础,准确地理解概念、定理是学好数学的前提。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力。
在例题课中要把解(证)题思路的发现过程作为重要的教学环节。不仅要学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使你这样做,这样想的。这个发现过程可由教师引导学生完成,或由教师讲出自己的寻找过程。
在数学练习中,要认真审题,细致观察,对解题起关键作用的隐含条件要有挖掘的能力。学会从条件到结论或从结论到条件的正逆两种分析方法。对一个数学题,首先要能判断它是属于哪个范围的题目,涉及到哪些概念、定理、或计算公式。在解(证)题过程中尽量要学会数学语言、数学符号的运用。
初中数学研究对象大致可分为两类,一类是研究数量关系的,另一类是研究空间形式的,即“代数”、“几何”。要使同学们熟练地掌握一些重要的数学方法,主要有配方法、换之法、待定系数法、综合法、分析法及反证法等。
四、培养学生良好的思维品质
在学生初步学会如何思维和掌握一定的思维方法后,应加强思维能力的训练及思维品质的培养。
要注意培养思维的条理性与敏捷性。根据解题目标,确定解题方向。要训练学生思维清晰,条理清楚,遇到问题能按一定顺序去分析、思考,对复杂问题应训练学生善于于局部到整体再从整体到局部的思维方法。学生在思维过程中,要能迅速发现问题和解决问题。
要注意培养思维的严密性和灵活性。每个公式,法则、定理都有它的来龙去脉,都有使它成立的前提条件,都有它特定的使用范围,要做到言必有据。选择一些习题让学生先做,再针对学生思维中的漏洞进行教学分析。例:K是什么数时,方程KX2-(2K+1)X+K=0有两个不相等的实数根?有很多同学只注意由△=[-(2K+1)]2-4K·K=4K2+4K+1-4K2=4K+1>0,推得K>-14。而如果把K>-14作为本题答案那就错了,因为当K=0时,原方程不是二次方程,所以在K>-14还得把K=0这个值排除。正确的答案应是-14<K<0或K>0时,原方程有两个不相等的实数根。
在复习时要精选一些有代表性、巩固性和灵活性的习题,从各种不同角度,寻求不同的解(证)法,进行“一题多解”的训练,还可改变条件进行“一题多变”和“多题一解”的训练。这是综合运用数学知识和方法提高解题能力的重要措施。培养学生思维能力的方法是多种多样的,要使学生思维活跃,最根本的一条,就是要调动学生学习数学的积极性,教师要善于启发、引导、点拨、解疑,使学生变学为思。
总之,思维能力的发展对学生综合能力的发展起核心作用,数学教师在教学过程中,若能教会学生想象与设想,教会学生持果索因、转化受阻思维,就可以培养学生良好的思维方法和思维的逻辑性、灵活性,从而培养出具有优秀思维品质的合格初中生。