湛江德利车辆部件有限公司
摘要:汽油机空燃比控制常基于油膜动态方程,由于该方法具有难以考虑其它影响因素对空燃比影响的缺陷,所以采用子空间N4SID方法辨识空燃比动态方程,并基于辨识出的空燃比动态方程对影响空燃比的相关因素进行对比分析。比较模型预测的空燃比与基于GT-power仿真平台的发动机试验获得的空燃比,结果表明,辨识出的模型方程精度较高,适用于发动机空燃比控制建模。
关键词:汽油机;空燃比控制建模;子空间N4SID方法
引言:汽油机常采用油膜动态方程设计空燃比补偿器,这种基于气道油膜辨识的空燃比控制方法,在发动机稳态运行时,较为适用,而在发动机瞬态时,辨识误差较大。美国FTP75测试循环表明,发动机80%的排放物均在发动机冷启动过程的瞬态运行工况下产生。可见瞬态工况下的空燃比精确控制(考虑油膜动态效应)是改善发动机缸内空燃比波动,从而降低污染物排放的有效手段。为此,本文拟采用子空间辨识N4SID算法,辨识多影响参数下缸内空燃比动态波动模型,分析多参数对辨识出的空燃比动态模型的影响,分析模型的抗扰性能,为空燃比的控制建模打下基础。
一、汽油机油膜动态方程辨识及空燃比控制建模
汽油机采用进气道喷射方式,燃油从喷油器喷出后,一部分以蒸汽形式存在于气道中,另一部分直接附着在壁面上,形成附壁油膜。油膜的存在对发动机实际燃烧空燃比有很大影响,特别是发动机冷启动时。研究发现,美国联邦FTP75测试循环冷启动过程中所排放出的HC及CO占整个循环排放物的70%~80%,而很大部分原因归结于冷启动过程中空燃比波动过大。
因此,对汽油机进气道油膜动态模型建模分析的研究引起了国内外学者的广泛兴趣。最有效的油膜物理模型建模研究始于1981年Aquino所提出的模型,他将由喷油器喷出的燃油分成以X分数沉积在壁面上的油膜以及以(1-X)分数悬浮在进气道中的燃油蒸汽及微小液珠。附着在壁面上的油膜的蒸发时间常数是。之后于1992年,HendricksE.和Vesterholm提出了双时间常数模型,该模型额外考虑了燃油蒸汽和液珠由进气道进入气缸的输运时间,其在某些工况下的模拟结果较优于模型。之后很多国外学者也对进气道油膜进行过深入的研究,在上述两种模型的基础上,提出了不同的改进模型。国内有人采用最小二乘法、扩展卡尔曼滤波等方法对油膜模型进行辨识,并在此基础上设计了油膜补偿器,对各种工况下的喷油量进行补偿达到精确控制空燃比的目的。
上述传统的辨识方法,均基于油膜物理模型的推导及建立,过程繁杂,不利于考虑发动机多运行参数对缸内空燃比的影响。子空间辨识方法直接从输入输出数据中提取状态空间参数,可以综合考虑多参数对空燃比模型的影响,同时在辨识时间上要较传统辨识方法少,这主要是因为子空间方法没有循环迭代的过程。
二、研究对象及模型简述
试验系统采用某型汽油发动机为研究对象,将实物系统简化,在GT-Power软件中搭建相应的发动机模型。发动机基本参数见表1。
图4上半部分为预测出的空燃比与试验值的绝对误差分布图;下半部分为相对误差分布图。由图4可知,模型预测的空燃比绝对误差分布在-0.2647~0.4475之间,相对误差分布在-2.25%~3.59%之间,模型计算的结果与试验值吻合程度高。说明子空间辨识算法N4SID在辨识空燃比模型方面准确、有效。由于转速信号的周期性采样,计算结果也大致呈周期性分布。验证数据的输入值都假定是准确和稳定的。但在发动机实际运行过程中,对数据进行采集时均会夹杂外界的干扰信号,绝对准确无扰动的数据在试验过程中不可能产生。为此,为验证所辨识出的模型抗扰动的能力,在验证数据中分别单独对输入信号添加零均值,方差为信号平均值±1%范围内分布的白噪声信号,以此检验模型的抗扰动能力。
添加扰动信号后,空燃比验证误差分布图如图5和图6所示。
由图5、图6可知,转速加入白噪声信号后,输出数据的绝对误差与相对误差几乎与不添加白噪声信号时的相同,可见辨识出的模型对转速的变化有较大的抗扰能力。喷油量信号加入白噪声后,空燃比的绝对误差与相对误差波动幅度小,模型对喷油量的干扰信号具备抗扰能力。当对进气量添加白噪声后,模型预测出的空燃比绝对误差、相对误差均产生大幅度的波动,相对误差限跃升至-14%~10%,说明辨识出的模型对进气温度的波动比较敏感。分析其原因,可能是用于辨识的数据中进气温度变化频率最小,每250个采样点才产生进气温度的阶跃变化,由此导致辨识出的模型对进气温度变化敏感。
将辨识所得的模型应用于不同发动机工况,此处任意选取4个工况点进行对比,将进气温度和喷油量分别定为283K、4.1g/s,转速分别为1372r/min、4859r/min、5128r/min、5732r/min。其所预测出的发动机空燃比与发动机仿真试验所得的空燃比见表2。
在所选取的工况点下,经辨识得出的模型预测出的空燃比值与发动机仿真试验所得的空燃比值符合度好,预测的相对误差在±5%以内。
经以上分析可知,对于多输入下的发动机空燃比动态模型建模,传统的基于物理分析建模的方法较为复杂,且不易于考虑多参数的影响。而应用子空间方法针对试验采集的大量样本数据,进行快速高效辨识,可以解决物理建模繁琐低效的缺陷,且辨识的精度高,抗输入干扰的能力强,是发动机瞬态空燃比控制建模的有效方法。
结束语
(1)推导了子空间辨识N4SID算法的主要过程,基于该算法的限制条件在GT-Power软件中设计了发动机开环状态试验,采集了1200组各工况下的数据,其中1000组数据用于模型的辨识,200组数据用于模型的验证。
(2)辨识程序辨识出的3阶状态空间模型具有最优的精度,模型计算出的空燃比绝对误差限为-0.2647~0.4475、相对误差限为-2.25%~3.59%。
(3)向验证数据输入信号添加零均值,方差为各信号平均值1%的白噪声后发现,辨识出的模型对转速、喷油量的波动抵抗力强。而对进气温度变化敏感,究其原因可能在于采样数据中进气温度变化频率低,造成模型对进气温度的敏感性增强。
(4)模型预测值与GT-power仿真试验值的相对误差在±5%以内,辨识出模型的精度符合空燃比控制建模需求。
参考文献
[1]钟祥麟.基于油膜模型的多点喷射汽油机瞬态工况控制研究.长春:吉林大学,2017.05.
[2]李顶根,舒咏强.汽油机进气道油膜模型参数辨识算法的研究.内燃机学报,2015.05.
[3]姚栋伟.基于EKF算法的进气道燃油状态观测器研究.内燃机学报,2010.04.