我们学习公制的n躺着代数学G\mathcal的结构{G}在复杂领域上。让G=S?R\mathcal{G}=\mathcal{S}\oplus\mathcal{R}是Levi分解,在此R\mathcal{R}是G\mathcal的激进分子{G}并且S\mathcal{S}是G\mathcal的强壮的semisimplesubalgebra{G}。由m(G)表示m\left(\mathcal{G}\right)不能分解的公制的n躺着代数学和R^\mathcal的所有最小的理想的数字{R}^\botR的直角的补充。我们获得下列结果。作为S\mathcal{S}-modules,R^\mathcal{R}^\bot对双模块同形${\mathcal{G}\mathord{\left/{\vphantom{\mathcal{G}\mathcal{R}}}\right。\kern-\nulldelimiterspace}\mathcal{R}}${\mathcal{G}\mathord{\left/{\vphantom{\mathcal{G}\mathcal{R}}}\right。\kern-\nulldelimiterspace}\mathcal{R}}。向量空间的尺寸在G\mathcal上由所有nondegenerate跨越了不变的对称的双线性的形式{G}等于G\mathcal上的某些线性转变的向量空间的{G};这种尺寸比大或等于+1m\left到m(G)(\mathcal{G}\right)+1。R\mathcal的centralizer{R}在G\mathcal{G}等于所有最小的理想的和;它是R^\mathcal的直接的和{R}^\bot和G\mathcal的中心{G}。最后,G\mathcal{G}没有强壮的semisimple理想如果并且仅当R^椠?楤晳癡?