简介:纪念小说《弗兰肯斯坦(Frankenstein)》问世200周年,摩根图书馆与博物馆举行了本次展览,主要探讨了玛丽雪莱(MaryShelley)是如何创造一个怪物的。
简介:[1]CaoYY,LamsJ.RobustH∞ControlofUncertainMarkovianJumpSystemswithTime-Delay.IEEETrans.Automat.Contr.,2000,45(1):77~83.[2]DoyleJC,Glover,KhargonekarPP,etal.State-SpaceSolutionstoStandardH2andH∞ControlProblems.IEEETrans.Automat.Contr.,1989,34(8):831~847.[3]FridmanE,ShakedU.H∞-normandInvariantManifoldsofSystemswithStateDelays.Sys.&Contr.Lett.,1999,36(2):157~165.[4]GeJ,FrankPM,LinCF.RobustH∞StateFeedbackControlforLinearSystemswithStateDelayandParameterUncertainty.Automatica,1996,32(6):1183~1185.[5]HirataM,LiuKZ,SatoT,etal.ASolvabilityConditionofanExtendedH∞ControlProblemUsingRiccatiInequalities.Int.J.Contr.,2000,73(4):265~275.[6]HmamedA.FurtherResultsontheRobustStabilityofUncertainTime-DelaySystems.Int.J.Syst.Sci.,1991,22(3):605~619.[7]IwasakiT,Skelton,E.AllControllersfortheGeneralH∞ControlProblem:LMIExistingConditionsandState-SpaceFormulas.Automatica,1994,42(7):1307~1317.[8]LeeB,LeeJG.RobustStabilizationofLinearDelayedSystemswithStructuredUncertainty.Automatica,1999,35(6):1149~1154.[9]LeeKH,MoonYS,KwonWH.RobustStabilityAnalysisofParametricUncertainTime-DelaySystems.InProceedingofIEEEConferenceonDecisionandControl,Tampa,FL,1998:1346~1352.[10]LehmanB,KhalilS.DelayIndependentStabilityConditionsandDecayEstimatesforTime-VaryingFunctional.IEEETrans.Automat.Contr.,1994,39(8):1673~1676.[11]MahmoudMS,Al-MuthairiNF.DesignofRobustControllersforTime-DelaySystems.IEEETrans.Automat.Contr.,1994,39(2):159~161.[12]MoriETN,KuwaharaM.AwaytoStabilizeLinearSystemswithDelayedState.Automatica,1983,19(5):571~573.[13]NiculescuSI,andAnnasuamyAM.ASimpleAdaptiveControllerforPositive-RealSystemswithTime-Delay.ProceedingoftheAmericanControlConference,Chicago,Illi
简介:<正>InthispaperitisprovedthatforallcompletelydistributivelatticesL.thecategoryofL-fuzzifyingtopologicalspacescanbewmbeddedinthecategoryofL-topologicalspaces(stratifiedChang-Goguenspaces)asasimultaneouslybireflectiveandbicoreflectivefullsubcategory.
简介:WeconstructaclassofintegrablegeneralizationofTodamechanicswithlong-rangeinteractions.ThesesystemsareassociatedwiththeloopalgebrasL(Cr)andL(Dr)inthesensethattheirLaxmatricescanberealizedintermsofthec=0representationsoftheaffineLiealgebrasCr(1)andDr(1)andtheinteractionspatterninvolvedbearsthetypicalcharactersofthecorrespondingrootsystems.WepresenttheequationsofmotionandtheHamiltonianstructure.Thesegeneralizedsystemscanbeidentifiedunambiguouslybyspecifyingtheunderlyingloopalgebratogetherwithanorderedpairofintegers(n,m).Itturnsoutthatdifferentsystemsassociatedwiththesameunderlyingloopalgebrabutwithdifferentpairsofintegers(n1,m1)and(n2,m2)withn2<n1andm2<m1canberelatedbyanestedHamiltonianreductionprocedure.Forallnontrivialgeneralizations,theextracoordinatesbesidesthestandardTodavariablesarePoissonnon-commute,andwheneithernorm≥3,thePoissonstructurefortheextracoordinatevariablesbecomessomeLiealgebra(i.e.theextravariablesappearlinearlyontheright-handsideofthePoissonbrackets).Inthequantumcase,suchgeneralizationswillbecomesystemswithnoncommutativevariableswithoutspoilingtheintegrability.