简介:研究一类非线性双曲方程utt-M∫Ω|u|2dx△u=|u|αu的初边值问题局部解的存在性和唯一性.利用Galerkin方法和改进的势井理论得到:当M(r)和α满足一定条件,且初值充分小时,方程存在局部解.
简介:讨论了一类具有奇异系数的p-Laplace问题-Δpu-μ|u|u|x|p=u|x|tu+λuq-2u,x∈Ω,u=0,x∈Ω无穷多解的存在性,其中N≥3,Ω是RN中一有界光滑区域,0∈Ω,Δpu=-div(|▽u|p-2▽u),0≤μ〈μ=(N-p)ppp,1〈p〈N,0≤t〈p,λ〉0,1〈q〈p,p*(t)=p(N-t)(N-p)是Hardy-Sobolev临界指数利用变分原理和对偶喷泉定理,证明了该问题具有无穷多解.
简介:本文考虑一类被捕食种群为线性密度制约,捕食者种群无密度制约且具HollingⅠ型功能性反应的捕食与被捕食两种群模型 得到了系统存在极限环的必要条件,且证明了当b充分小时,系统至少存在两个极限环。
简介:研究每个忙期中第一个顾客被拒绝服务的M/M/1排队模型主算子在左半复平面中的特征值,证明2√λμ-λ-μ是该主算子的几何重数为1的特征值。
简介:主要得到整函数与其导函数具两个公共小函数时的一个唯一性定理,改进了RubelYang及郑稼华等人的某些结果.
简介:我们证明了半空间中一维可压Navier—Stokes方程初边值问题局部解的存在性,证明主要是利用了能量方法.