简介:轮胎作为车辆与路面接触的唯一载体,其力学特性是车辆动力学响应分析和控制的重要基础.目前仿真研究中所使用的轮胎模型多为稳态模型,不能精确地描述轮胎的动态特性.因此,将动态轮胎模型应用于车辆动力学仿真软件中,对于整车动力学仿真和研究具有重要的作用.多体动力学软件Adams中自带的轮胎摩擦模型为静态模型,它将摩擦系数视为一个静态值,而实际轮胎与路面之间的摩擦是动态变化的,应为相对速度和位移的动态函数,所以本文以基于LuGre动态轮胎模型,应用Matlab/Simulink软件构建动态轮胎模块,通过接口与Adams/Car连接,进行整车模型与Simulink轮胎模型的同步联合仿真,实现轮胎与路面动态接触的历程的模拟,提高车辆系统仿真的精度.
简介:随着航空航天事业的发展,对各种材料性能的要求也越来越高.而蜂窝夹层板在结构和性能上具有许多优点,已在航空航天等领域应用广泛,并在一些重要结构中充当承力部件,但由于其特殊的蜂窝结构,相对于一般的板,在受力时会发生比较大的变形,所以用非线性理论研究蜂窝夹层板结构,并考察不同参数对非线性振动特性的影响,具有重要的理论和实际意义.如今,蜂窝夹层板的几何非线性问题已引起更多学者的关注.在一般均质理论的假设下,一些学者已经研究了各项同性蜂窝夹层板板的非线性动力学特性.研究了一类受面内激励和横向外激励联合作用下的四边简支蜂窝夹层板在主参数共振-1:2内共振时的双Hopf分叉问题.首先利用多尺度法得到系统的平均方程,然后结合分叉理论得到了系统的分叉响应方程,根据对分叉响应方程的分析,得到了六种不同的分叉响应曲线并给出了系统产生双Hopf分叉的条件.利用数值方法得到系统在参数平面的分叉集,通过对不同分叉区域的分析发现,随着参数的变化系统平衡点会分叉为两类周期解,随后周期解会通过广义静态分叉为准周期解,或者通过广义Hopf分叉为3D环面.
简介:研究了一类参数激励和外激励联合作用下四边简支薄板在1:1内共振下的周期解分叉.首先,根据vonKarman方程推导出四边简支薄板的运动控制方程,利用Galerkin方法得到参数激励和外激励联合作用下的两个自由度的运动方程.然后,通过引入周期变换和相应的Poincar6映射推广了次谐Melnikov方法.最后,对系统进行数值模拟验证了理论的正确性.
简介:采用单向耦合同步法,利用Lyapunov稳定性定理、全局同步法及最大Lyapunov指数法分别对Lorenz系统、变形耦合发电机系统及超混沌Chen系统的自同步进行了研究.为适用于混沌保密通信,使用单路信号实现了驱动系统与响应系统的同步,并给出将超混沌Chen系统的自同步用于混沌掩盖保密通信的具体例子.数值模拟验证了所给方案的有效性.
简介:模糊控制器的设计是模糊控制系统的核心,而模糊控制器设计的关键部分是模糊规则,模糊规则的好坏决定了模糊控制系统的控制效果.而一般模糊规则是通过专家经验获得的,存在很大的主观性的缺点,本文以智能悬臂梁结构为研究对象,设计了模糊控制器,改进了遗传算法,提出了使用改进遗传算法对模糊规则进行优化的方法,并给出了遗传编码、适应度函数的确定方法,最后利用Matlab/Simulink建立智能悬臂梁结构的仿真模型,对模糊规则优化前后的智能悬臂梁振动控制结果进行对比.仿真结果表明,优化后的模糊规则使智能悬臂梁的振动幅度显著缩小,而且振动衰减速度明显加快.
简介:本文利用改进的齐次平衡法,首先得到了带强迫项的变系数KdV方程的多孤立波解,然后借助此解得到了强迫KdV方程的多孤立波解.最后作为应用例子,利用图形分析方法分析了Rossby孤立波的相互作用,指出了影响Rossby孤立波相对幅度、相位、传播方向及平衡位置的主要原因.
简介:使用Chebyshev-Gauss(CG)伪谱法研究带动量轮和推力器的欠驱动航天器姿态最优控制问题.基于欧拉姿态角和动量矩定理导出两类航天器姿态运动模型,采用Clenshaw-Curtis积分近似得到性能指标函数中的积分项,应用重心拉格朗日插值逼近状态变量和控制变量,将连续最优控制问题离散为具有代数约束的非线性规划(NLP)问题,通过序列二次规划(SQP)算法求解.数值仿真结果表明,对两类欠驱动航天器的姿态机动最优控制均能达到设计控制要求,得到的姿态最优曲线与验证得到的曲线几乎完全重叠.