学科分类
/ 1
19 个结果
  • 简介:研究一类混合非完整系统的运动.它可分为3个阶段:第1阶段为完整系统的连续运动,第2阶段为冲击运动,第3阶段为非完整系统的连续运动.后一阶段的初始条件由前一阶段的运动终了条件确定.举例说明结果的应用.

  • 标签: 非完整系统 混合 连续运动 冲击运动 初始条件 一阶
  • 简介:研究了一般非完整系统虚位移关系的不确定性问题与非线性问题,提出了本质线性非完整约束和本质非线性非完整约束的概念,证明并给出了各种虚位移定义和交换关系的合理适用范围.研究表明,在本质线性非完整系统中,各种虚位移定义和交换关系是合理的,可以在数学与力学上得到统一.然而,在本质非线性非完整系统中,已有的虚位移定义和各种交换关系会导致数学或力学上的矛盾.这些矛盾来源于对本质非线性非完整约束的物理实现不清楚.

  • 标签: 非完整系统 Appell-Chetaev定义 交换关系 虚位移
  • 简介:采用连续介质理论与分子动力学模拟相结合的方法,研究了氧化锌纳米线的振动问题.建立了氧化锌纳米线核壳模型,解释其等效杨氏模量及压电常数的尺寸效应.通过连续介质理论求得氧化锌纳米线振动固有频率,并与分子动力学模拟得到的结果进行对比.研究表明,氧化锌纳米线在极化方向的等效拉伸杨氏模量随着横截面尺寸的增加而逐渐增大,且通过核壳模型分别求得核、壳拉伸杨氏模量.拟合得到的等效拉伸杨氏模量与分子动力学方法获得的等效拉伸杨氏模量符合得很好.根据连续介质理论得到等效弯曲杨氏模量,发现等效弯曲杨氏模量也随着横截面尺寸的增加而增大.氧化锌纳米线极化方向的压电耦合能力比一般压电陶瓷好,压电常数随着横截面尺寸的增加逐渐减小.氧化锌纳米线在不同温度条件下的振动频率没有明显变化,在不同外电场条件下的振动频率有显著变化.分子动力学模拟得到不同横截面尺寸的氧化锌纳米线振动频率不同.根据连续介质理论,求得悬臂Timoshenko梁模型相应尺寸的振动频率,发现横截面的尺寸越大,连续介质理论与分子动力学模拟得到的振动频率越接近.

  • 标签: 氧化锌纳米线 分子动力学 尺寸效应 压电效应 振动
  • 简介:以单壁纳米碳管为例,建立了其分子动力学模型,并对(5,5)和(10,10)扶手椅型纳米碳管与刚性壁的正碰撞过程和简谐纵波传播过程进行了模拟.在此基础上,探讨如何用弹性杆模型来研究纳米碳管的动力学问题.研究表明,弹性杆模型可以描述单壁扶手椅型纳米碳管与刚性壁高速碰撞的动力学行为;对于纵波传播中的色散描述,则需在弹性杆模型中计入纳米碳管微结构引起的非局部弹性效应.

  • 标签: 纳米碳管 冲击 色散 分子动力学模拟
  • 简介:提出求解一阶Lagrange力学逆问题的新途径;给出由一阶微分方程直接构造Lagrange函数的基本解法,以及几种与不同的补充条件相对应的特殊解法.举例说明所得结果的应用.

  • 标签: Lagrange力学逆问题 微分方程 一阶Lagrange函数
  • 简介:转子系统的不对中问题在旋转机械中非常普遍,是引起严重整机振动的主要原因之一.特别地,以先进涡扇发动机转子系统为代表的带有弹性支承、内外布置的多转子系统,其动力学特性具有特殊性,不对中的理论问题与工程需求十分突出.本文首先针对两类不对中问题(联轴器不对中和支点不对中),评述了目前不对中建模方法、不对中转子系统的动力学和振动特性方面的代表性研究成果.其次,针对航空发动机转子系统,详细综述了目前已有的套齿联轴器、弹性支承组件的动力学研究成果.在此基础上,作者针对其具体结构特征,进行了航空发动机转子系统不对中成因与模式分类,初步建立了联轴器不对中和支点不对中的转子系统动力学模型并进行了振动特性分析.

  • 标签: 转子系统 联轴器不对中 支点不对中 动力学模型 航空发动机转子系统
  • 简介:多体系统多点接触碰撞问题可以归结为一个将系统的动力学方程与并协性约束方程相结合的问题.针对这样一个含并协性条件的混合方程组,建立了基于LCP格式的包含碰撞/接触问题的多刚体系统动力学分析框架,提出了一种基于步长评价准则的变时间步长的数值求解策略,实现了无摩擦情况下多刚体系统多点接触碰撞问题的数值算法.最后给出了数值算例,验证了算法的有效性.

  • 标签: 多体动力学 接触碰撞 LCP方法
  • 简介:研究了受到打击的空间多刚体系统考虑库仑摩擦时动力学的求解方法.在引入新的无量纲的时间参数后,通过建立相应的动量-冲量的一阶微分方程,将在趋近于零的冲击区间的讨论变为在有限区间中来分段研究含滑动-粘滞的冲击过程,得到了受到打击的空间离散系统考虑库仑摩擦时的动力学的求解方法.

  • 标签: 空间多刚体系统 冲击问题 空间离散系统 动力学
  • 简介:针对日益受到关注的液体晃动问题,提出了一种基于浅水波理论的研究方案.该方案采用浅水波理论而非势流理论导出系统控制方程,并通过哈密顿体系表达;利用中心有限差分法和Stormer-Yerlet算法进行空间和时间离散;模拟了不同初值条件下的液体晃动情况并对比分析了影响系统非线性响应的主要因素.结果表明,基于浅水波理论能有效解决液体晃动问题;与Euler格式对比,Stormer-Verlet算法精度较高;除共振外对于系统非线性响应的影响容器初始位移比初始速度更显著;非共振情况一定条件下,充液容器运动过程中液体晃动能起到阻尼作用.

  • 标签: 液体晃动 浅水波理论 初值问题 数值模拟 非线性
  • 简介:对于大型二维稳态声场问题,本文提出了一种基于间接Trefftz方法的波数法.在该方法中,声压响应解用一组精确满足Helmholtz控制方程的波函数通解和由外部激励在自由空间产生的特解来近似表示.通过在边界上采用加权余量法得到各个波函数的系数,从而得到所求声场的声压响应.一个60m×40m的大型声场算例表明,得到相同精度和收敛性的结果时,波数法比BEM所需的自由度少.

  • 标签: 加权余量法 声学 Trefftz方法 BEM
  • 简介:用目标函数方法寻求保守系统中非线性振动问题的解.以摆的运动作为例子,对相关的微分方程在初位移不为零而初速度为零条件下在时间上进行积分.此时,速度为时间的函数,把此函数称为目标函数.因为摆从右侧到左侧再回到右侧完成一个周期,从而此目标函数的第2个零点便是运动的周期.此外,在数值积分过程中,同时得到了位移函数.此法依赖于常微分方程的数值解法和找函数零点的对分法.某些其它非线性常微分方程的解也得到研究.最后,给出了一些例子和数值结果.

  • 标签: 目标函数法 非线性振动 数值解法 保守系统
  • 简介:对具有重根的广义特征值问题,采用基于快速Fourier变换的方法进行求解,实现重根辨识.文章中采用多次单点初始激励的方式,仿真计算测点上的自由振动响应,对响应进行快速Fourier变换后得到频域数据.而后对频域数据分析,得到固有频率和多组测点振型数据.根据单频和重频处的振型特性,引入振型的余弦相似度为判别参数,辨识重根.数值算例表明,该方法可有效实现重根辨识,同时特征值的计算能达到较高精度.

  • 标签: 广义特征值问题 重根辨识 快速Fourier变换法 固有频率 动力学响应
  • 简介:随机振动试验中存在的加速度功率谱密度带外超差问题对普遍采用的随机振动试验非常重要,本文分析了功率谱密度带外超差出现的原因、征兆、对试验产生的影响以及采取的解决措施,并且分析了常用随机振动试验和振动试验计量检定标准中对功率谱密度带外超差的规范要求.关键词随机振动,加速度功率谱密度,

  • 标签: 随机振动 加速度功率谱密度 带外超差
  • 简介:把谱元法应用于刚架结构的动力学响应计算和分析中.建立了杆和梁的谱单元动力学刚度阵,针对刚架结构组装了整体动力学刚度阵,建立了整体结构的运动方程,计算了结构的固有频率和时域响应,并与采用有限元方法得到的结果进行了对比.从结果中可以看出谱元法在数值模拟中的独特优势.

  • 标签: 谱元法 刚架结构 固有频率 时域响应
  • 简介:通过引入不同的对偶变量,将粘性流体的扰动问题化为具有良好结构特性的可解耦Hamilton系统.利用可解耦Hamilton系统微分形式与积分形式的等价性,导出了粘性流体扰动问题的Hamilton混合能变分原理,并建立了本征函数系之间的双正交关系.

  • 标签: 哈密顿体系 粘性流体 变分原理 双正交关系
  • 简介:航天器对恶劣动力学环境的适应能力直接关系到整个航天飞行任务的成败,振动试验控制技术是动力学环境试验的关键环节.本文分析了近年来国内外航天器振动试验设备和振动控制算法的研发动态、基本原理和关键技术达到的水平.提出了跟踪研究的基本思路,途径及建议.

  • 标签: 航天器 力学环境 振动试验 技术进展
  • 简介:在简单介绍WH-800型离心机基本结构及工作原理的基础上,介绍了基于重构吸引子轨迹矩阵的奇异值分解技术,并引入自相关函数对现有奇异值分解技术加以改进.通过对现场实测故障信号的分析,表明改进的奇异值分解技术具有很好的降噪效果,能在强噪声背景环境下准确提取设备的故障特征信号,为离心机的故障诊断提供了一种新的思路.

  • 标签: 离心机 奇异值分解 降噪 故障诊断
  • 简介:采用面向对象技术对复杂机械系统动力模型元素进行了分析.根据其特点提出了支持动力学仿真建模平台的模型元素类体系结构,并对该平台关键技术--关联关系管理和子系统建模进行了探讨.最后应用上述技术开发出了仿真建模平台InteDyn,并以汽车整车模型和悬架模型为例证明了这些技术的可行性和有效性.

  • 标签: 复杂机械系统 动力学 建模 模型元素 面向对象
  • 简介:Leland模型是在考虑交易费用的情况下,对Black—Scholes模型进行修改得到的非线性期权定价模型.本文针对Leland模型,提出了一种求解非线性动力学模型的自适应多尺度小波同伦摄动法.该方法首先利用插值小波理论构造了用于逼近连续函数的多尺度小波插值算子,利用该算子可以将非线性期权定价模型方程自适应离散为非线性常微分方程组;然后将用于求解非线性常微分方程组的同伦摄动技术和小波变换的动态过程相结合,构造了求解Leland模型的自适应数值求解方法.数值模拟结果验证了该方法在数值精度和计算效率方面的优越性.

  • 标签: Leland模型 插值小波算子 同伦摄动技术