简介:多种技术用于装备油气田智能生产井,监测油藏流体流动。4D地震技术用于监测流体饱和度随时间的变化,一些井内安装了永久性传感器,在地面直接读取井下压力、温度、产量和含水率。已证实微地震和测斜仪成图技术在油田注采、废物回注处理和岩土力学应用等方面发挥着重要作用。文中重点介绍了地面测斜仪长期监测技术及其在优化注入方案中的应用。该项技术应用于加利福尼亚油田注采和废物回注处理项目,取得了明显效果。总之,多项技术已成功地用于油藏监测。实践证明,地面测斜仪成图技术非常实用而有效,可用于追踪油藏流体流动,防患于未然,为经营者节约大量资金。未来的油藏监测仪器组合将实现测斜仪和微地震传感器一体化,更好地实时监测油藏对流体注入和采出的响应。
简介:对能源行业而言,页岩气藏已成为最重要的天然气资源之一。不过由于页岩本身很复杂,再加上到目前为止页岩气井的生产历史都还较短,使得对这类气藏产量的预测很困难,这一问题在页岩气井生产的早期尤其明显。为了能用于页岩气藏的储量估算和产量预测,我们对阿普斯双曲线方程进行了修改。尽管阿普斯方程因其简便和易操作而在大多数情形下用起来很便捷,但这种方法有自身的局限性[例如其假设条件是边界主导的流动(boundary-dominatedflow),而且井底流动压力、泄油面积、渗透率和表皮因子都是常数]。通过利用产量不稳定分析(RTA)理论对生产数据进行分析,可以建立解析模型,用于页岩气藏的产量和采收率的预测。由于基于RAT的模型不会受到阿普斯方程法的很多假设条件的限制,相较于利用修改后的阿普斯双曲线方程得到的产量递减曲线而言,这些模型得到的结果更精确。本文介绍了一个实用的RTA操作流程,用来确定发育多裂缝的水平页岩气井的关键生产动态参数。这是一种确定性的方法,可用于页岩气井长期生产动态的预测。该方法较阿普斯方程的一个最大的优点是可以在不同的经营策略下进行产量预测。利用这种方法,还可以对不同完井设计方案和作业情景(如压缩装置安装延迟)下的生产和经济影响进行研究。我们利用马塞勒斯页岩区带150多口井的资料对该方法进行了检验。结果表明,其预测结果与利用递减分析和油藏模拟得到的结果有很好的可比性。本文还介绍了这种方法在马塞勒斯页岩区带的应用实例,通过这些实例来说明其工作流程和结果。
简介:非常规天然气(致密气、煤层气和页岩气)已经成为日益重要的能源类型。这类气藏的低渗透率非常低,其经济开采取决于甜点区的识别。目前,这类气藏常用的开采技术大都极大地依赖储层的可压裂性。含气页岩储层内存在脆性比较好且渗透率比较高的层带是页岩气开发取得成功的一个前提条件。这类脆性带与泥岩内石英和/或碳酸盐矿物含量比较高有直接关系。在粘土矿物含量比较高的泥岩中,石英矿物可能会因海底动物(infaunalorganisms)的掘穴活动而富集和重新分布。页岩储层中物性较好的带,可能是由石英颗粒选择性富集形成的粉沙质和砂质弯曲条带(tortuousstrips),这些石英颗粒构成了潜穴晕环(burrowhalos)。颗粒选择性(Grain—selective)潜穴可以改善储层的储集能力、渗透率和可压裂性,因而控制着页岩油气储层的存储系数(storativity)。文中展示了三种不同类型藻管迹状(Phycosiphon—like)潜穴的三维重建结果,并研究了可能因遗迹组构的存在(ichnofabric)而形成的流体流动通道。采用体积法对藻管迹状(phycosiphoniform)潜穴制造者产生的生物扰动进行了研究,结果发现,在这类生物扰动层段内,孔隙度和渗透率因生物扰动而提高的沉积岩体积占总体积的比例可达13%~26%。因生物扰动而形成的石英质条带高度弯曲,而且在纵向和横向上都表现出很好的连通性,从而使页岩的纵向和横向渗透率都有很大程度的改善。此外,潜穴产生的石英格架(quartzframeworks)可以改善原本不具脆性的泥岩的局部可压性。
简介:采用数学预测模型对气区产量变化趋势进行预测,从数学模型的角度论证天然气业务发展规划主要指标的科学性,对指导天然气业务中长期发展规划方案的编制具有现实意义。通过对气田常用产量预测模型的特点及适用性进行总结和评价,从中选出不受模型分类因子正整数取值限制的广义Ⅰ型预测模型和广义Ⅱ型预测模型,以及目前常用的广义翁氏模型等3种预测模型对四川盆地常规天然气(中国石油西南油气田公司)产量进行全生命周期预测。结果表明:(1)3种预测模型对四川盆地常规天然气产量发展趋势都有着较乐观的预测结果,由于各自数学原理不同,预测结果中峰值时间、峰值产气量、峰值产气量发生时的累积产气量等存在着差异;(2)广义Ⅰ型预测模型和广义翁氏模型在2021—2030年预测年产气量均在(200~210)×108m3左右,更符合四川盆地常规天然气的发展形势,其预测结果更为可靠;(3)广义Ⅰ型预测模型预测峰值时间出现在2065年,峰值产量285×108m3,相对稳产期17年,而广义翁氏模型预测产量峰值时间则在2050年,峰值产量270×108m3,相对稳产期11年。
简介:本文介绍了如何在Pickett图上绘出毛管压力常数、传输速度、孔喉半径以及自由水面以上高度线。综合利用这些属性可确定流动单元和储集层,并阐明了地质学、岩石物理学和油藏工程问的重要关系。流动(或水力)单元与储集层的概念在过去几年里已相当成功地用于石油工业中,并取得了丰硕的成果。传输速度K/φ可用于许多确定流动单元的实例中。井问流动单元的关系有助于确定储集层和预测储层性能。研究表明,对传输速度K/φ为常数的地层,有效孔隙度与真电阻率的Pickett交汇图为一系列相互平行的直线。直线的斜率与孔隙度指数m、含水饱和度指数n、和绝对渗透率方程中的常数有关。通过这些直线,可直接确定每一类流动单元在任意含水饱和度下的毛细管压力和孔喉半径。含水饱和度65%时的孔喉半径与Winland的r35值有很好的对应关系。以前发表的文献中没公开发表过此方法。画出K/φ常数曲线,可在Pickett图上绘出完整的毛细管压力曲线,包括束缚水饱和度和非束缚水饱和度的区域。以前用于确定给定层段绝对渗透率的经验方法是假设含水饱和度为束缚水饱和度。本文介绍了一种确定绝对渗透率的方法,它适用于层段含可动水的情况。我们通过Cdorado东南部Sorrento地区的Morrow砂岩资料和Dokoto北部LittleKnife地区MissionCanyon组的碳酸盐岩资料为例说明此技术的应用情况。我们认为,流动单元可通过单对数坐标的Pickett图、毛细管压力、孔喉半径和Winlandr35值一体化确定。