简介:对[0,1]上的L—可积函数ф及α>0定义下列B—D—B算子;本文研究了Mna(ф,x)当α>0时,在LP(0,1](1≤p<+∞)的一致逼近;当α≥1时在LP[O,1]及L1P[0,1]逼近度的量化估计。作者在文[4]中定义了B—D—B算子:其中fnk(X)称为Bézeief基函数文[4]研究的是B—D—B称子在C[0,1]空间中的逼近性质,本文继续[4]的工作,专研究这个算子在LP[0,1](1≤P<+∞)的逼近性质,证明了Mna(фX)当α>0时在LP[0,1]中为一致逼近,并得到了当α≥1时在LP[0,1]及L1P[0,1]中逼近度的量化估计。
简介:广义Nekrasov矩阵在经济数学、控制理论、数值代数等诸多领域中都有着重要的作用.本文研究了广义Nekrasov矩阵的判定问题.首先从矩阵的元素出发,利用不等式放缩的方法,构造正对角矩阵因子,获得了广义Nekrasov矩阵几种新的判别方法,推广了已有的一些结果.最后用数值算例说明了所得结果的有效性.
简介:研究具有反馈控制的单种群对数模型.通过构造适当的Lyapunov函数.我们让得系统的正平衡点是无条件全局稳定的.所得结果补充和完善了已有的结果.