简介:摘 要:为提高岩石爆破块度预测效果, 利用双江口料场开挖爆破统计数据, 通过影响爆破岩石块度因素的重要度计算和皮尔逊相关系数判定筛选出炸药单耗、 岩石块度尺寸、 岩石弹性模量以及炮孔堵塞长度与炮孔排距比(T/B ) 等6 个特征变量作为输入参数, 建立一种基于改进随机森林回归算法的爆破块度预测模型。 该模型预测的爆破块度逼近真实值,预测结果的可决系数(R2 ) 、 均方根误差(RMSE ) 和平均相对误差(MRE ) 分别为0.9881, 0.0430 和0.1445, 相较于线性回归预测模型和 BP 神经网络预测模型而言, 其预测效果更优, 因此该模型在实际应用中更具适用性, 能够为爆破参数设计和优化提供参考。
简介:摘要:当楼面混凝土按照设计后浇带分块浇筑时,如何保证不同时间段浇筑的单块楼板在楼面整体平整度方面满足设计要求,是楼面工程质量管控重点。基于此,文章详细分析了超平楼面后浇带平整度精确控制绿色施工技术,以供参考。
简介:将改进的非线性技术(GA-SVM)应用于成矿预测,为成矿有利度预测方法提供一种新思路。在分析哈图矿集区成矿有利度基础上,选取28个学习样本、10个与成矿有关的地质变量,应用基于遗传算法(GA)寻优的支持向量机(SVM)方法,对成矿有利度进行建模,并与BP神经网络模型预测结果进行比较。结果表明,GA-SVM回归预测模型能很好地拟合成矿有利度与各地质变量间的非线性关系。样本数量有限时,GA-SVM比BP神经网络具较高的拟合精度,更适合非线性成矿预测工作,具较强的推广意义。