简介:摘要高铁隧道变形监测过程中有很多不确定因素导致获得的监测数据包含很多随机误差,利用小波分析理论先对数据进行降噪处理,再通过小波分析与经典的人工神经网络相结合,建立小波神经网络模型进行预测。与BP网络模型相比,经过小波函数降噪后再进行预测模型的建立所获得的预测结果精度更高,误差小,在高铁隧道的变形监测研究中有很好的应用前景。
简介:摘要:全球导航卫星系统(GNSS)是一种高度精确、连续、全天候和近实时微波技术,其中GPS的应用最为广泛,目前GPS已经能够达到毫米级的平面坐标定位精度,这种优势能够大大缩减人工测量的时间,提高效率,但是由于GPS所测高程和我国工程测量中使用的高程基准面不同使得GPS高程测量值的应用受到限制。针对将GPS高程测量值通过拟合方法转换为工程坐标下的正常高的研究有着广泛的实用价值。本文采用目前流行的BP神经网络法对测区范围内GPS所测得的大地高数据进行拟合,基于GPS测量得到已知点坐标和高程异常,建立两者之间的神经网络关系,并对网络进行训练,根据预测值和实际值之间的差异对网络中的权值和阈值进行重复计算修改,最后使得预测与实际值之间的误差满足要求,计算外符合精度并对未知点的高程异常值进行预测。通过MATLAB实现BP神经网络高程拟合并与多项式曲面拟合方法进行精度比较,最后得出BP神经网络拟合精度高且相比于多项式曲面拟合法具有准确性,可靠性和稳定性。
简介:摘要:随着科技的不断发展,图像识别已经成为研究的热点领域。深度神经网络作为现代人工智能的重要分支,为图像识别技术的发展带来了革命性的突破。本文旨在研究面向图像识别的深度神经网络模型设计,探讨不同模型的设计方法和优劣,并深入分析其内在机制。通过实验对比和分析不同模型的性能,总结各自的特点和适用场景,为未来的研究和实践提供有益参考。
简介:摘要:2D转3D是3D图像/视频内容制作的重要研究方向之一。随着高清显示终端和智能手机等的普及,医学图片偏向于复杂人体病理切片图较为复杂,2D图片已经不能满足广大用户的需求,并且3D显示的应用越来越广泛。但由于3D片源制作复杂、耗时长等原因,导致3D片源严重不足。2D转3D技术可以相对快速的把普通的2D图像/视频内容转化为3D内容,省去了人工拍摄耗时耗力的过程,因而可以缓解3D片源不足的问题,同时使得一些复杂医学图片以3D的形式重新再现于医学专业。
简介:摘要:在建筑工程估价中,人们利用传统的计算工具来计算工程造价,已经不能适应信息化迅速发展的时代,人们迫切需要一种新的方法来代替原来的传统的计算方法。一个有经验的预算师或者估算师,根据某个工程的类别、特征,参照已建工程的数据资料,运用某种方法就能较准确地计算出该工程的造价,误差比较小,这种专家的大脑思维方式值得我们学习。本文引入人工神经网络中的bp网络模型,介绍该模型工程估价的计算过程,指出该模型可对不同情况的工程造价进行合理的预测,并能取得良好地效果,为工程估价带来巨大变化。
简介:摘 要:本文主要探究悬臂梁桥施工过程中挠度设计值与实测值之间存在的误差,及如何应用BP神经网络通过已施工阶段的误差值来对未施工节段的误差进行预测。并通过构建BP神经网络模型预测值来实现对桥梁施工进行优化指导,并将此模型应用于汕头市连阳河特大桥悬臂段施工挠度误差模拟预测。实验表明BP神经网络模型在悬臂施工挠度误差预测中精度较高,有较好的效果。并对施工过程中可能造成挠度误差的主要原因进行了分析。
简介:摘要:随着遥感技术的不断进步和深度学习算法的快速发展,逐渐出现了一系列应用于遥感图像分类的神经网络模型。本文通过对近年来相关文献的综述,总结了各种神经网络模型在遥感图像分类中的应用情况、优缺点及发展趋势,旨在为遥感图像分类领域的研究者提供参考和启示。
简介:摘要:图像技术是工业生产环节使用的重要手段,以工业产品件检测为例,尤其在柔性以及非接触式的情形下,依赖人工很难完成相关工作。本文以工业产品件的检测场景及图像处理为需求,开展图像特征提取、特征数据增强等技术应用研究并搭建基于RNN神经网络的图像数据增强系统,以此实现图像的增强处理,强化图像的有效信息,增强图像数据处理的价值以及获得更为准确的结果,为企业在生产及检验检测方面提供技术支撑。