学科分类
/ 1
3 个结果
  • 简介:本文首先分析了增量学习过程中支持向量与非支持向量的相互转化问题,而后在此基础上提出了基于超球结构的支持向量机增量学习算法。该算法主要利用超球结构,完成对增量学习中训练样本的选取,进而完成分类器的重构。实验表明,该算法比传统支持向量机增量学习算法具有更高的分类精度。

  • 标签: 机器学习 增量学习算法 超球结构 支持向量机
  • 简介:针对合作制造企业间关系的特点,界定了企业关系价值的基本内涵。通过对企业关系价值度量维度划分,建立了企业关系价值的度量指标体系。在此基础上,采用模糊支持向量机方法建立了企业关系价值分级度量模型,并对其进行了分级度量。实验结果表明,该方法不仅能有效地度量出企业关系价值的级别,而且可以作为企业制定合作战略和决策的依据。

  • 标签: 合作制造 企业关系价值 数据挖掘 支持向量机
  • 简介:针对现有供应商分类方法应用于高端装备制造业供应商所存在的局限性,从相互依赖视角构建了高端装备制造业供应商分类指标体系,提出了基于改进支持向量机的高端装备制造业供应商分类模型。该模型根据供应商误分代价不同,设计代价敏感支持向量机分类器,利用粒子群算法优化分类器的参数,并采用概率输出方法对多个优化的二类分类器的结果进行组合以实现多类分类。实验结果表明,该模型提高了现有方法的分类效果,可以降低总体误分代价,有效识别出对高端装备制造企业具有重大影响的供应商,为高端装备制造企业实施供应商分类管理提供了依据。

  • 标签: 供应商分类 相互依赖 支持向量机 代价敏感学习 粒子群算法