简介:Thisarticleisconcernedwithsecond-ordernecessaryandsufficientoptimalityconditionsforoptimalcontrolproblemsgovernedby3-dimensionalNavier-Stokesequations.Theperiodicstateconstraintisconsidered.
简介:AgraphGiscalledchromatic-choosableifitschoicenumberisequaltoitschromaticnumber,namelych(G)=χ(G).Ohba’sconjecturestatesthateverygraphGwith2χ(G)+1orfewerverticesischromaticchoosable.ItisclearthatOhba’sconjectureistrueifandonlyifitistrueforcompletemultipartitegraphs.Recently,Kostochka,StiebitzandWoodallshowedthatOhba’sconjectureholdsforcompletemultipartitegraphswithpartitesizeatmostfive.Butthecompletemultipartitegraphswithnorestrictionontheirpartitesize,forwhichOhba’sconjecturehasbeenverifiedarenothingmorethanthegraphsKt+3,2*(k-t-1),1*tbyEnotomoetal.,andKt+2,3,2*(k-t-2),1*tfort≤4byShenetal..Inthispaper,usingtheconceptoff-choosable(orL0-size-choosable)ofgraphs,weshowthatOhba’sconjectureisalsotrueforthegraphsKt+2,3,2*(k-t-2),1*twhent≥5.Thus,Ohba’sconjectureistrueforgraphsKt+2,3,2*(k-t-2),1*tforallintegerst≥1.
简介:<正>Foranyintegersa1,a2,a3,a4andcwitha1a2a3a40(modp),thispapershowsthatthereexistsasolutionX=(x1,x2,x3,x4)∈Z4ofthecongruencea1x12+a2x22+a3x32+a4x42≡c(modp)suchthat‖X‖=max{|x1|,|x2|,|x3|,|x4|}《p1/2logp.
简介:Inthispaper,weinvestigatetheglobalexistenceandlongtimebehaviorofstrongsolutionsforcompressiblenematicliquidcrystalflowsinthreedimensionalwholespace.TheglobalexistenceofstrongsolutionsisobtainedbythestandardenergymethodundertheconditionthattheinitialdataareclosetotheconstantequilibriumstateinH~2-framework.IftheinitialdatasinL~1-normarefiniteadditionally,theoptimaltimedecayratesofstrongsolutionsareestablished.WiththehelpofFouriersplittingmethod,onealsoestablishesoptimaltimedecayratesforthehigherorderspatialderivativesofdirector.