简介:缅怀著名数学和数理科学家。我国函数论、数学物理和系统工程奠基人之一.纪念他的百岁诞生,回顾他在数学和数理科学的若干重要领域的开创性和奠基性工作。包括半(亚)纯函数与整函数函数理理论、准解析函数与函数逼近理论、微分方程解析理论与Minkowski-Denjoy函数理论、广义Reimann几何与混合量分析学、微分微分差分方程与算子函数论、纤维丛积分与相对性量子场论、电磁风暴说与数理地震学、外微分形式与场论、各向异性能带理论与统计岩体力学、教学模型与自动控制、学科规划与人才培养等方面的巨大贡献,诗词书画与音乐艺术等方面的天赋与造诣;缅怀他严谨的治学态度和一贯的创新精神。
简介:本文利用Schur—Cohn—Jury引理及分岔理论讨论了一类捕食与被捕食系统的动力学性质,分析了其正平衡点的稳定性,并讨论了Neimark—Sacker分岔稳定性与方向。通过数值模拟验证了所得结果的正确性。
简介:由于设备会随着使用时间的增加和自身寿命增长引起的退化而逐渐磨损失效进而发生故障.因此对于生产企业来说,想要提高自身竞争力,就要在生产过程中合理地安排预防性维护以减少设备故障导致的计划外停机,防止生产计划和生产线的中断,从而才能获取更多收益.本文从生产企业的角度出发,提出单机生产系统的非等周期不完美预防性维护与生产的联合优化策略,综合考虑生产价值、生产成本、生产延迟成本及各类维护成本等,构建了总利润率模型,目标是使总利润率最大化.其中涉及到的三类维护方式为(1)完美维护——即更换;(2)小修维护——即使设备“恢复如旧”;(3)不完美预防性维护——即使设备状态恢复到介于“完全如新”与“恢复如旧”之间的某状态.最后本论文通过数字实例,验证了新策略模型在实际生产应用中的有效性.
简介:对一类三阶非线性系统构造出了较好的Lyapunov函数,得到其零解全局渐近稳定的充分性准则,而且去掉了一般要求Lyapunov函数具有无穷大这个较强的条件,只要求系统正半轨线有界,所得结果包含并改进了旧有的结果.
简介:利用临界点理论研究带阻尼项的二阶Hamilton系统周期解的存在性.在具有部分周期位势和线性增长非线性项时,根据广义鞍点定理定理,得到了系统多重周期解存在的充分条件.