简介:利用蒙特卡洛模拟实验研究倾向得分匹配方法(propensityscorematching)的敏感性。模拟试验结果表明:(1)倾向得分匹配方法对误差项分布不敏感,即使当假定的误差分布与实际分布相差较大时,据倾向得分匹配方法仍能得到大致无偏的估计。(2)隐指标函数的误设可以使倾向得分匹配方法估计结果的偏差高达61%。(3)当共同支撑域较大时,倾向得分匹配方法对具体匹配方法的选择不敏感。当共同支撑域较小时,局部线性回归匹配方法为最优。(4)倾向得分匹配方法对强可忽略性假设是非常敏感的,即使轻度的违背此假设,倾向得分匹配方法的估计结果偏差也超过50%。