学科分类
/ 25
500 个结果
  • 简介:方差分析用F统计量进行检验,F=S2AS2e,S2A为因素A的组间方差,S2e为剩余方差.实际上,S2A、S2e都是方差σ2的估计量.本文简介组内观测值个数相等情形单因素方差分析的参数估计方法.(双因素方差分析的估计方法类似)1.组间方差等于样本平均...

  • 标签: 方差分析 样本平均数 样本方差 随机误差 正态总体 统计量
  • 简介:本文综合近邻权函数法及最小二乘法,用两阶段最小二乘估计的方法得到了半参数EV模型中参数的估计量及其强相合性,渐近正态性。同时也得到了非参数函数的估计量及其强相合性,一致强相合性。

  • 标签: 半参数模型 参数估计 强相合性 一致强相合性 渐近正态性
  • 简介:本文研究了混合整数线性模型方差分量在无信息先验分布和有信息先验分布下Bayes估计,给出了混合整数线性模型方差分量无信息和:有信息先验分布下的极大后验估计和最佳Bayes估计

  • 标签: 混合整数线性模型 方差分量 极大后验估计
  • 简介:认知诊断模型中,项目参数的方差-协方差矩阵具有很重要的作用。作为一种非参数化的方差-协方差矩阵估计方法,Bootstrap法的一个主要优势在于它不需要解析推导。比较认知诊断模型中基于解析法的经验交叉相乘信息矩阵、观察信息矩阵和三明治协方差矩阵法,与Bootstrap法在估计项目参数标准误时的表现,模拟结果显示,认知诊断模型及Q矩阵正确设定或是模型中错误设定较少时,解析法的表现优于Bootstrap法,只有在样本量N=5000的条件下,Bootstrap法的表现才基本与解析法接近;当模型中错误设定较多时,Bootstrap法也没有表现出明显的稳健性。因此,在认知诊断模型中,推荐使用基于解析法的方差-协方差矩阵估计方法,尤其是三明治协方差矩阵法;当没有现成的基于解析法的方差-协方差矩阵估计方法可用时,Bootstrap法可以作为一种粗略的估计方法使用,尤其是在样本量较小的情况下。

  • 标签: 认知诊断模型 方差-协方差矩阵 BOOTSTRAP法 解析法 信息矩阵
  • 简介:文章区分了控制网中的两类不同性质的数据,通过控制网中的观测数据和基准数据分别建立了误差方程和基准方程,从而建立了概括平差模型。应用数理统计计算了方差的区间估计和基准方程的假设检验,最后应用于附合网基准数据选用的判断,得出了有益的结论。

  • 标签: 附合网 平差 单位权中误差 基准
  • 简介:摘要:采用协方差拟合算法加以矩阵预处理机理对多输入多输出雷达高精度波达方向进行了解决处理。本文通过协方差拟合准则、矩阵预处理优化机制、ESPRIT算法等手段,对MIMO雷达的模型的俯仰角和方位角进行了共同估算。

  • 标签: 多输入多输出雷达 矩阵预处理 DOA估计
  • 简介:文献[1]提出了相关系数平稳过程并讨论了它的参数估计方法,其参数估计值采用了数值迭代法·本文在[1]的基础上对一种特殊的相关系数平稳序列的均值和方差提出一种具体的解决方法·得到了确切的均值和方差的参数估计表达式.

  • 标签: 随机序列 相关系数平稳过程 极大似然估计
  • 简介:在分析现有的双基地STAP杂波协方差矩阵估计方法的基础上,从杂波建模的角度,建立了不同距离门的杂波协方差矩阵的联系,并在此基础上提出了基于最大似然的双基地STAP杂波协方差矩阵估计方法,数据仿真和分析表明该方法不仅具有较优的处理性能而且具有较好的适用性和扩展性。

  • 标签: 双基地空时自适应 杂波协方差矩阵 最大似然
  • 简介:在地铁附近基坑工程的施工阶段,通常要对地铁隧道结构进行水平位移监测、分析和预测。采用卡尔曼滤波能实时估计出水平位移状态向量,实现水平位移预测,如果卡尔曼滤波中动态噪声不准或不易确定,就会导致滤波发散而无法获得准确的预测结果。研究和采用基于方差分量估计的卡尔曼滤波,利用预报残差实时更新模型的动态噪声方差,可以避免滤波发散,提高预测精度。实际应用表明,基于方差分量估计的卡尔曼滤波能获得较好的水平位移预测效果。

  • 标签: 方差分量估计 卡尔曼滤波 地铁隧道 水平位移预测
  • 简介:一、启发提问1.什么叫总体平均数?什么叫样本平均数?2.甲乙两名战士在同样条件下练习射击,每人打5枪所得环数分别是:甲:6、8、9、9、8  乙:10、7、7、7、9怎样判断他们的射击技术谁比较稳定.3.什么是方差?什么是标准差?4.怎样计算一组数据的方差?二、读书自学 教材P167-P175三、启读指导1.方差是各数据与它们的平均数的差的平方的.2.设一组数据x1、x2…xn.它们的平均数为x,方差为S2,则计算方差的公式为S2=.3.方差是衡量一组数据波动大小的量,一组数据的方差越大、则这组数的波动.4.启发提问(2)中战士甲这组数据的方差S2甲=,战士乙这组数据的方差S2乙=.射击技术比

  • 标签: 样本方差 组数据 学生成绩 样本平均数 样本数据 样本中
  • 简介:同学们都知道,我们可以利用方程、不等式、函数等知识解决有关方案决策的问题,而实际上.利用方差也能帮助我们解决某些决策问题,现举例说明。

  • 标签: 决策问题 方差 举例说明 不等式 利用 同学
  • 简介:摘要“方差”是人教版教材八年级下册第二十章《数据的分析》的最后一节内容,主要学习分析数据的集中趋势和离散程度的常用方法。本节课在研究了平均数、中位数、众数这些统计量之后,进一步研究另外一种统计方法——方差。“方差”是属于数学中统计学的范畴,它的特点是与生活中的实际问题联系紧密,对学生统计观念的形成有着举足轻重的作用。

  • 标签: 方差 数学 教学实录
  • 简介:1.质检部门对甲、乙两工厂生产的同样产品进行抽样调查,计算出甲厂的样本方差为0.99,乙厂的样本方差为1.02,那么,由此可以推断出生产此类产品.质量比较稳定的是厂.

  • 标签: 样本方差 专题训练 质检部门 抽样调查 质量比 产品
  • 简介:我们知道.对于给出的一组数据。可以通过求极差、方差和标准差的方式来了解数据的离散程度.方差的计算过程是“先平均,再求差,然后平方.最后再平均”,在实际应用时为了使数量单位与原数据保持一致而使用标准差.还要将求出的方差再开平方.在学习过程中,有的同学会产生如下的一些疑问,让我们一起研究一下.

  • 标签: 方差 计算过程 离散程度 学习过程 数量单位 标准差
  • 简介:

  • 标签:
  • 简介:我们已经知道,方差是反映一组数据波动大小的基本量,其计算公式是s^2=1/n[(x1-x^-)^2+(x2-x^-)^2+…+(xn-x^-)^2].方差越大,数据的波动越大;方差越小,数据的波动就越小.应用这一结论,可以解决许多实际问题.但我们也发现,在应用这个公式进行方差的计算时,有时计算较复杂,容易产生错误.因此,我们有必要来探索一些计算方差的简便方法,以提高解题的速度和计算的正确率.

  • 标签: 方差 巧算 波动 正确率 公式 应用