学科分类
/ 25
500 个结果
  • 简介:当前,因缺失专用设施,治安工作涉及面广、管理难度大,公安机关警务保障有限,鄱阳湖生态经济区水域治安存在诸多问题。为此,需政府牵头、理顺关系,加强法制宣传和安全教育,集中力量进行专项整治,保障水上治安管理经费以及加强情报信息预警工作,只有这样,才能为鄱阳湖生态经济区建设创造和谐稳定的社会环境。

  • 标签: 鄱阳湖 水域治安 调查 思考
  • 简介:乐乐的爸爸是一名工程师,这一天他带回家一张喷泉的建设图纸。乐乐看见了,拿过去算面积,她是这样算的:3.14×5^2=78.5(平方厘米),假设喷泉的面积是x平方厘米,那么应该有78.5:X=1:20,喷泉的面积就是1570平方厘米,也就是0.157平方米。

  • 标签: 面积 喷泉 平方 工程师
  • 简介:【问题】一个环形铁片,内圆直径是4分米,环宽是1分米。这个环形铁片的面积是多少?【思路点拨】根据题意画出下图,从图上可以看出,求圆环的面积要用大圆的面积减去小圆的面积。如果设大圆的半径是R。

  • 标签: 面积 思路点拨 铁片 环形 题意
  • 简介:教学设计教学内容北京市义务教育课程标准试验教材P67-68页教学目标1.结合给桌面配玻璃的实际情境,引导学生自主提出数学问题,借助分析圆内接、外切正方形与圆的面积关系,推理出圆面积的取值范围,积累解决新问题的思维经验。2.激活学生已有学习经验,将圆转化为学过的图形,通过动手操作,借助动画演示的方式感受化曲为直,渗透极限思想。在解决新问题的过程中,通过操作、观察、对比活动,使100%的学生经历推导圆的面积公式的过程,体会转化、对应思想,提高学生的推理能力。

  • 标签: 圆面积
  • 简介:恩德丽(Andrewlinn)1981年4月曾经导出恒等式这里,lnu是籍助于曲线y=1/x下面的面积来定义的。同样的结果可以用保持面积且映曲线y=1/x到自身的如下线性变换而得到。令T是用矩阵

  • 标签: 线性变换 阴影区域
  • 简介:今天是明明的表哥结婚大喜的日子,明明和爸爸妈妈早早就来到了酒店。明明的妈妈去帮忙张罗,明明和他爸爸则坐在一旁休息。

  • 标签: 面积 桌布 妈妈
  • 简介:计算图形的面积是几何趣题中很有趣的一类,这类题目看似复杂,似乎要算上很长时间,但实际上只要用好拼接法,这类题目就可以迎刃而解。

  • 标签: 面积 趣题 几何
  • 简介:《圆的面积》是人教版六年级上册第67~68页及71页练习的内容。本案例包括了课前微课、课堂实录、教学设计、课件以及学案。学案中让同学们自己操作'把圆形剪拼成以前已经学过的图形',使学生们对课堂讲解内容有个预习掌握的过程,然后在课堂上通过分割图形,让同学们掌握求解新图形面积公式的基本方法。

  • 标签: 图形面积 课堂实录 学案 讲解内容 人教版 教学效果
  • 简介:图示为半径同为a的圆弧相交或相切后形成的图形,请计算这个图形的面积

  • 标签: 面积 图形 半径 中学 数学
  • 简介:有些数学题目,如果按照一般思路解答,往往会很麻烦,而换一个角度去思考,常常会收到事半功倍的效果。

  • 标签: 面积 事半功倍 数学题
  • 简介:“如图,一块长20米,宽12米的长方形菜地,中间修一条宽2米的水泥路,菜地的面积是多少平方米?”狗熊看完题目,惊呆了,“这怎么计算呢?”

  • 标签: 小学生 数学学习 阅读知识 课外阅读
  • 简介:

  • 标签:
  • 简介:面积问题是初中数学的一个重要内容,大多数面积问题都是固定的、不变的,只要找出计算面积所需要的条件,通过计算就能得出结论,近年来的中考试题中出现的一些面积问题却是可变的,除了要求算出面积之外,还要求算出面积的最小值,这类问题的要求显然提高了,为了解决这类问题,需要分清题目中的条件,哪衅是不变的,哪些是可变的,在变化中找出解决问题的方法,下面以一道有关面积的中考题为例,分析其解题过程。

  • 标签: 面积问题 数学 试题解析 中考
  • 简介:案例概述北师版三年级下册《什么是面积》一课是在学生初步认识周长的基础上进行的一节几何概念教学课,从长度到面积,一维空间到二维空间,是空间认识发展上的一次飞跃。该课例在成都市武侯区、金牛区、成华区三区联动研讨活动中循环展示,并多次在各级各类考察团和培训班中展示,均引发与课老师热烈反响。

  • 标签:
  • 简介:

  • 标签:
  • 简介:摘要房产测量包括房产调查和房产测绘,是采集和表述房屋有关信息的一门技术。它能为房地产开发、经营以及交易提供基本信息服务,房产面积测量环节多、要求高、政策性强。文章简要论述了房产面积的共用面积及分摊问题进行了评定与分析。

  • 标签: 房地产测绘 共用面积 分摊面积
  • 简介:有些综合题,乍一看感觉无从下手,运用面积关系不作任何辅助线,问题便可迎刃而解.在运算过程中,要学会寻求合理简洁的运算途径来解决问题,不仅可以激发学生的学习兴趣,还可以提高学生的运算能力.

  • 标签: 面积关系 综合题 巧解 运算能力 学习兴趣 辅助线