简介:为研究斜拉桥中索与梁、索与索之间的耦合振动问题,建立了斜拉桥的单梁-多索力学模型.考虑索的初始垂度引起的几何非线性因素的影响,将多索梁模型分段处理,基于索、梁经典的面内振动的微分方程,通过索、梁连接处的动态平衡条件,建立多索梁模型面内振动理论.以双索梁为例,应用分离变量法,结合边界条件,求解双索斜拉梁模型平面内自由振动的特征值问题.同时,建立双索梁的有限元模型,有限元所得结果与本文理论研究吻合良好.最后对CFRP索梁模型的各项相关重要参数进行分析,并将本文理论与课题组前期成果进行对比分析.研究表明,CFRP索能极大改善双索梁模型的基本动力学性能.增大拉索轴向刚度能明显提高模型的低阶频率,而梁弯曲刚度的提高对其高阶频率的提高比较明显.
简介:本文以一类单自由度双边非对称碰撞振动系统为研究对象,采用广义Hertz接触模型表示碰撞过程,考察系统在宽带随机激励下的稳态响应.应用基于广义谐和函数的随机平均法推导出系统在宽带随机外激励下的伊藤随机微分方程,通过求解相应的稳态FPK方程,得到系统关于幅值、能量和位移的稳态概率密度以及位移与速度的联合稳态概率密度.另外,将系统的随机响应近似为马尔可夫过程,利用广义胞映射法得到系统的近似稳态响应.最后通过与蒙特卡罗模拟结果的对比,验证了随机平均法和广义胞映射法的有效性.
简介:基于Poincaré映射方法对一类两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在性判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在性判据的正确性,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.
简介:研究了因与外部接触而发生局部非线性的动力学系统.基于NOFRF理论,对系统中出现的各次谐波分量进行研究,推导出了该类系统各自由度各阶谐波分量的表达式.证明了该类动力学系统中各自由度之间高次谐波分量的与原线性系统动柔度矩阵的相关元素成正比关系,并据此提出了一种简洁的局部非线性位置的辨识方法.采用这种方法,可以通过结构体中任意两个部位之间的高次谐波分量的比值关系,经过一次谐波激励而辨识出非线性的具体位置.对一个多自由度系统进行数值仿真,验证了该方法的有效性.