简介:针对1点RANSAC(RandomSampleConsensus)单目视觉EKF(ExtendedKalmanFilter)算法中的滤波发散问题,分析了滤波发散的产生原因,提出了一种基于渐消记忆滤波的1点RANSAC单目视觉姿态估计算法。该算法通过在EKF滤波方程中引入加权因子,逐渐加大当前数据的权重,相应地减少旧数据的权重,有效地扼制了算法中的滤波发散问题。最后通过两组验证性实验验证说明了算法的有效性。实验结果表明:该算法能够有效地解决1点RANSAC单目视觉EKF算法中的滤波发散问题,具有更高的精度。第一组双轴联动实验,航向角的平均误差减小2.4158?,俯仰角平均误差减小0.1782?;第二组偏航轴大角度转动实验,摄像机航向角的估计误差一直保持在1.5?以内。
简介:针对风场对临近空间伪卫星导航精度影响的问题,提出伪卫星抗风场干扰自主导航算法,以提高伪卫星的导航精度。首先,将风场模型加入伪卫星SINS/CNS/SAR组合导航的量测模型中,建立风场干扰下的SINS/CNS/SAR组合导航系统模型;然后,设计自适应UPF非线性滤波算法,将该算法用于SINS/CNS/SAR组合导航解算中,分别在考虑风场干扰和不考虑风场干扰的情况下,利用UKF、UPF和自适应UPF算法对临近空间伪卫星组合导航系统误差进行估计。仿真结果表明,在考虑风场干扰的条件下,提出的自适应UPF算法在东向、北向和天向的速度误差均控制在±0.21m/s以内,误差大小分别是现有的UKF和UPF的1/5和1/3。该算法能有效抑制风场对导航解算精度的影响,提高伪卫星的定位精度。
简介:为了提高标准Cubature卡尔曼滤波(CKF)的稳定性和鲁棒性,提出一种改进的多重渐消H∞滤波cubamre卡尔曼滤波算法。首先基于系统状态的可观测性给出多重渐消因子矩阵求解过程,提高滤波算法的稳定性,抑制滤波发散;其次,引入H∞鲁棒思想,构造多重渐消H∞滤波Cubature卡尔曼滤波器;最后,提出采用一种奇异值分解的矩阵分解策略代替标准Cubature卡尔曼滤波中的Cholesky分解,进一步提高算法的数值稳定性。实际GPS/INS组合导航实验表明,改进的多重渐消H∞滤波Cubature卡尔曼滤波算法不仅能有效抑制滤波发散提高算法的稳定性,而且对观测野值具有更高的鲁棒性;提出的新算法与标准CKF算法相比,XYZ三个方向的位置精度分别提高了55.8%,46.6%和39.7%。
简介:提出了一种高性能氮化铝(AlN)差分谐振式加速度计结构。通过引入两级微杠杆来放大质量块的惯性力,提高灵敏度;采用"I"形支撑梁来降低横向灵敏度;利用差频检测方案降低温度共模误差的影响。该加速度计主要由质量块、支撑梁、双级微杠杆和谐振器组成,并通过理论分析和有限元仿真优化了它们的结构参数。模态分析表明两个谐振器的基频大约为373.3kHz,与干扰模态的频率差大约为9.4kHz,有效地实现了模态隔离。根据灵敏度的仿真结果,AlN差分谐振式加速度计的灵敏度64.6Hz/g,线性度为0.787%,横向灵敏度为0.0033Hz/g。热仿真的结果表明单个谐振器的温度灵敏度约为490Hz/℃,加速度计输出差频的温度灵敏度为–0.83Hz/℃,证明了差频检测方案可以降低温度共模误差的影响。上述所有仿真结果验证了该加速度计结构设计的可行性。