简介:文章利用正规对偶映射的定义,给出了任意Banach空间Lipschitz强伪压缩映射不动点的Ishikawa迭代收敛定理.该定理不仅推广了已知结果,而且还简化了目前相应结果的证明.
简介:深化对本性谱的认识;给出∑_e~n(n≥2)型Banach空间上的摄动类问题的反面回答.
简介:以二阶的情形讨论了Poincaré差分方程y(n+m)+(a1+p1(m))y(n+m-1)+…+(an+pn(m)y(m)=0当其常系数部分x(n+m)+a1x(n+m-1)+…+anx(m)=0的特征方程有相同的根时,解的渐近性质,通过不动点方法给出了Poincaré差分方程的解渐近于其常系数方程解的条件,并给出了渐近式高阶项的估计。
简介:本文研究了一类广义的Lasota-Wazewska模型的正概周期解,通过转化模型为一个等价的积分方程,并利用非增算子的锥上不动点定理,建立了该模型正概周期解存在性的新结果,对照已有的工作,本文的方法是新颖的.