简介:通过计算两个广义的范德蒙(Vandermonde)行列式,得到了第一类无符号Stirling数和第二类Stifling数的一种新的表示方法:用行列式来表示.
简介:研究了一致连续广义Φ-伪压缩映射的不动点收敛定理.该定理中不要求Φ(t)为严格递增函数且对实序列的条件做了相应地放宽,从而所得结果推广和改进了已知的结论.
简介:通过引入两个函数,讨论了它们的凸性和单调性,由此得到下凸函数的Hadamard不等式的改进,推广了有关文献的结果.又根据GA一下凸函数与下凸函数的关系,得到GA一凸函数的Hadamard不等式的改进与推广.
简介:本文利用一种积分平均函数给出了加权Dirichlet空间Dα。(α>-1)上的复合算子Cψ为Schattenp-类算子的充要条件.此结果包含了过去已有的关于Hardy空间及加权Bergman空间Aα(α>-1)上的复合算子的已有结论.主要定理是:设p>0,α>一1,ψεDa,则Cψ为Dα上的Schatten p-类算子的充要条件是存在δ>0,使得积分平均函数Φδ(z)=λ(D(z,δ))=1 integral form n=D(z,δ)τψ,α(ω)d-λ(ω)属于L2p(dv),其中D(z,δ)为伪双曲圆盘,τψ,α为Cψ关于Dα的确定函数;dv(z)=(1-|z|2)-2dλ(z),dλ为D上的就范面积测度.