简介:长沙市湘府路快速化改造工程位于长沙市城市南部,主线全长约11.85km。主线高架桥长9.051km,除节点桥外,标准跨度为30~32m,3~5跨一联。标准跨上部结构为钢板-混凝土结合梁,横向共11片结合梁,间距2300mm,钢梁高1080mm;混凝土板分2层,底层10cm为预制结构,底层板和钢梁工厂结合,现场吊装施工,顶层20cm混凝土板以底层板为底模现场浇筑。下部结构为双柱式框架墩,基础及承台现场施工,墩柱和盖梁工厂预制,现场吊装,墩柱和承台之间、墩柱与盖梁之间均采用灌浆套筒连接。设计体现了“工厂化、预制化、装配化”的理念,减少了施工现场作业量,减少了环境的污染和对现状交通的干扰。
简介:为研究铁路斜拉桥钢-混结合段脱空对结构的影响,以甬江左线特大桥主桥——铁路钢-混混合梁斜拉桥为背景,采用ANSYS软件建立该桥1/2钢-混结合段模型,利用有限单元生死关系杀死钢板底层混凝土单元,模拟脱空破坏,计算在施工阶段或运营初期、长期运营阶段脱空前后结合段结构的应力和位移。结果表明:在施工阶段或运营初期,脱空后局部应力及变形变化明显,局部脱空区域钢板与混凝土之间的隆起距离相对较大,整体应力水平无明显变化,结构安全;在长期运营阶段,脱空后局部主拉应力水平有所增大,整体应力分布规律一致,竖向位移受脱空影响相对较大,钢板与混凝土之间的隆起距离比较小,结构安全。
简介:桥梁墩柱是桥梁结构中的关键构件,为研究近断层多脉冲地震动对桥梁墩柱地震风险的影响,采用场地地震危险性、结构地震易损性和结构震后损失3项参数进行综合评估,以PGA为地震动强度指标,分析某8度设防场地的地震年均发生概率,利用OpenSees建立某桥梁墩柱有限元模型并给出其结构的易损性曲线,结合损失比得到桥梁墩柱结构的年均预期损失比分布对比曲线和年均预期损失比。结果表明:随着地震动强度的增大,其对应的年均发生概率反而减小,在小于0.3g范围内的年均地震动发生概率最大;能量最强方向地震时程对应易损性曲线的上限,水平最强方向上的显著小波分量不适合分析桥梁墩柱结构的地震风险,水平单向地震动低估了墩柱的年均预期损失比;对于桥梁墩柱的地震风险而言,能量最强方向上的地震时程对应着桥梁墩柱地震风险的最不利情况。
简介:意大利帕多瓦的卡斯塔格纳拉桥是一座文物圬工拱桥,建于1859年,为确保该150余年历史圬工拱桥的安全运营,采用FRP对该桥进行维修加固。维修加固前,采用有限元软件建立桥梁模型,分析既有结构的承载能力,其中桥台采用二维弹性单元模拟,桥拱采用二维非弹性单元模拟,桥梁非线性平面受力分析中采用8节点四边形壳单元和6节点三角形壳单元。桥梁维修加固施工内容包括沿桥台和跨中布置边界锚固筋、灌浆加固以及用FRP布加固拱背、拆除并重建预应力混凝土面板。桥梁维修加固前后分别进行了静、动载试验,试验结果显示:桥梁维修加固后跨中及L/4处挠度值减小,桥梁最大承载能力提高到1205kN(未加固时为1155kN),FRP加固石拱桥能大幅提高其抗弯和抗剪承载力。
简介:使用支持向量机进行桥梁挠度修正时,若样本数据量较大,运算速度会较慢,为解决该问题,提出一种结合小波低频子带的挠度数据预处理方法,该方法通过选择合适的小波参数,将挠度传感器数据转换到小波低频子带进行预处理,再作为支持向量机的样本数据进行挠度修正,然后通过小波重构得到挠度传感器的理论值,将其代入公式即可得到修正后的挠度值。试验分别选取某桥300个样本数据进行学习和训练,经预处理后数据量仅为43个,运算时间从原来的33S降低到0.1~0.2S,表明修正计算的运算时间大幅降低;同时挠度均方误差由原来的0.3349降低到0.280,表明修正精确度略有提高,证明该方法具有很好的实用性。
简介:杭瑞高速岳阳洞庭湖大桥为(1480+453.6)m双塔双跨钢桁梁悬索桥,主梁为采用了钢-STC轻型组合桥面的板桁结合型钢桁加劲梁,钢-STC轻型组合桥面支承体系由横向桁架支承及桥面纵、横梁支承组成。采用ANSYS软件建立主梁节段有限元模型,针对组合桥面支承体系,从横向桁架结构形式、桥面纵横梁体系及其结构尺寸等方面进行设计优化。结果表明,带竖腹杆的横向桁架结构形式在桥面刚度、构件应力水平方面均具有较大优势;多横梁体系桥面刚度大,桥面构件应力水平低,适用于钢-STC轻型组合桥面。洞庭湖大桥板桁结合加劲梁钢-STC组合桥面支承体系采用带竖腹杆的横向桁架,纵横梁支承体系采用在横向桁架竖腹杆位置设置边纵梁、次横梁间距2.8m的多横梁体系,能够很好地兼顾结构刚度、应力水平及钢材用量。
简介:港珠澳大桥东人工岛结合部非通航孔桥是实现桥隧转换和人工岛相接的桥梁,为4×55m+3×55m的预应力混凝土连续梁结构,主梁为混凝土现浇箱梁,桥墩为矩形带倒角等截面实心墩,基础为变截面钻孔灌注桩,支座为分离式双曲面球型减隔震支座。该桥位于海水腐蚀环境、靠近人工岛,为抵抗风浪、提高耐久性,混凝土结构均采用海工耐久性混凝土;处于海水浪溅区和潮位变动区的结构主筋、箍筋和拉筋等均采用不锈钢钢筋;支座主体材料采用耐腐蚀钢和重防腐涂装体系;墩身、台身、承台外表面和处于浪溅区的箱梁外表面采用硅烷浸渍防腐涂装;箱梁底板、翼缘板和桥台等部位采用了抗冲磨涂装。