简介:针对推荐系统的准确性提出了一种优化算法,该算法首先利用用户的特征进行聚类,然后在聚类之后的各个聚簇中运用混合协同过滤框架为每个聚簇训练一个模型;同时在运用混合协同过滤时,针对传统的基于用户的协同过滤推荐算法在计算用户相似度方面进行了改进.实验表明,提出的优化算法显著提高了预测的准确性,从而提高了推荐结果的质量.
简介:提出一种步态能量图(GaitEnergyImage,GEI)的Gabor小波特征与协同表示的步态识别算法.首先通过运动目标检测,二值化和形态学处理等预处理操作得到步态轮廓图,然后进一步从步态轮廓图计算得到步态能量图.该算法将步态能量图的Gabor特征作为特征矢量,采用协同表示的方法进行步态识别.在实验阶段,通过在中科院自动化研究所CASIA步态数据库的DatasetB上进行测试,证明上述算法具有运行速度快的优点,并且对于跨视角步态识别具有一定的鲁棒性.
特征聚类的混合协同过滤算法研究
小波特征和协同表示的步态识别研究