简介:以廉价的工业级高模数比硅酸钠(Na2O·3.3SiO2)为硅源,以溴化十六烷基三甲基铵(CTAB)为模板剂,通过添加有机胺进行二次水热后处理,制备了掺杂V的介孔硅基分子筛。采用了XRD、SEM和低温液氮吸附脱附分析进行表征。实验结果表明,在不同的有机胺溶液和后处理温度下,样品的扩孔效果差异显著,其中,以三乙胺(TEA)和N-N二甲基十二烷基胺(DMDA)在高温水热处理下的扩孔效果最优。TEA的加入能调变V-MCM-41分子筛的孔径从3.94nm扩孔到9.30nm,增加2.36倍,而DMDA的加入能将孔径从3.94nm扩孔到6.62nm,增加68%。
简介:对可溶性淀粉进行羧基化,以硝酸铈铵作为引发剂,将羧基化淀粉与丙烯酰胺(AM)、二甲基二烯丙基氯化铵(DMDAAC)进行接枝共聚,制得一种具有吸附作用的新型材料——接枝淀粉絮凝剂(GSF)。利用扫描电镜(SEM)、红外光谱仪(FT-IR)、原子吸收等对其进行表征,观察接枝淀粉絮凝剂的形貌,分析其活性基团,研究其吸附性能。通过物理吸附衡量对污水中悬浮物的净化效果;通过改变絮凝剂加入量、pH值和吸附作用时间,探讨对配制的Cu2+、Pb抖溶液和实际西安护城河污水中两种离子的吸附,分别找出优化条件,然后作用于西安护城河污水和西安市西郊工业区污水排放口的污水,初见成效,Cu2+、Pb2+去除率迭到约50%。
简介:选取凹凸棒作为乳化剂,系统研究pH、颗粒浓度、油相体积分数以及不同价态盐对橄榄油/水型Pickering乳状液稳定性的影响,结果表明,体系pH在4~9范围内可制备出稳定的乳状液;颗粒浓度的提高可增强乳液的分层和聚结稳定性;乳液液滴直径随油相体积分数的增加先增大后减小;无机盐的引入不会对乳液相及水相的体积产生影响,但对乳液液滴的尺寸分布影响显著,其中NaCl浓度的增加有利于乳状液液滴数均直径的增加,而CaCl2浓度增加时,乳状液液滴数均直径呈现先增大后减小的变化趋势。研究表明,凹凸棒可作为一种新型纳米乳化剂应用于绿色乳状液的制备。
简介:介绍了通过采用水热法合成由纳米片自组装的类球形3D“微纳结构”FeP04·2H2O前驱体,再通过流变相锂化方法在650℃氩气气氛下加热10h,得到3D“微纳结构”LiFePO4锂离子电池正极材料。使用XRD、SEM对产物的晶型和形貌结构进行表征,表明该3D“微纳结构”FeP04·2H2O是由约100nm长、30nm厚的纳米片自组装而成。对该LiFePO4的电化学性能进行测试,结果显示该材料在10C、20C、30C时比容量分别达到116mAh/g、96mAh/g和75mAh/g。同时,该材料的振实密度测试结果为1.4g·cm-3这表明3D“微纳结构”的LiFeP04能较好地兼顾良好的倍率性能和较高的振实密度。
简介:利用水热法制备了不同Ni含量的ZnO(Zn1-xNixO)稀磁半导体材料,通过XRD、FESEM和VSM对产物的结构、形貌及磁性进行了分析与测试,探讨了反应时间对Zn1-xNixO材料结构及磁性的影响。结果表明,反应时间显著影响Zn1-xNixO的结构与磁性,随着反应时间的延长,样品的结晶质量下降,形貌由六方棒状结构转变为片状结构,同时磁性减弱。
简介:以Zn0.676Al0.328(OH)2(NO3)0.377,·0.682H2O为前体,无水乙醇作分散剂,在pH值为5~6、温度80℃条件下采用离子交换法组装了手性拆分剂D-(+)-对甲基二苯甲酰酒石酸(DTTA)插层锌铝水滑石,并采用XRD、FT-IR、DSC-TG、ICP和EA等现代物理化学分析技术对样品进行表征。结果表明,通过控制离子交换条件,可成功将DTTA插入到锌铝水滑石层间,得到的有机-无机复合材料结构完整,晶相单一,具有良好的层状结构,其层间距从0.90nm扩大为2.07nm。DTTA插入水滑石后,完全燃烧分解温度从346℃升高到470℃。
简介:本文以六水硝酸铈(Ce(N03)3·6H20)为原材料、聚乙烯吡咯烷酮(PVP)作为表面活性剂,不依托任何硬模板水热法一步合成了微纳米级规则的八面体形貌二氧化铈(Ce02)晶体。乙醇含量对该八面体Ce02可控形貌的制备发挥了重要作用。在200%反应温度下,随着乙醇的加入,乙醇和水的比例由1:3达到3:1,Ce02形貌相应从实心八面体变为空心不规则粒子。当乙醇和水的比例为1:1时,反应时间从最初6小时到12小时直到48小时,Ce02形貌从实心类似八面体先变为规则的八面体最后变为空心不规则粒子。本文重点考察了上述八面体Ce02的电化学行为,主要考察了在含0.02mol/L氯化钠的260x10。mol/L亚甲蓝fMB)溶液中,石墨烯(GN)/CeOd壳聚糖(CHIT)复合薄膜修饰碳糊电极(CPE)的电化学行为;以及在含0.5mol/L氯化钾的160mmol/LK3Fe(CN)6/KaefCN)6(1:1)溶液中,多壁碳纳米管(MWNTs)/CeO2/CHIT复合薄膜修饰玻碳电极(GCE)的电化学行为.电化学测量采用循环伏安法(CV)和微分脉冲伏安法(DPV).本文制备的微纳米级八面体形貌CeO2和新型碳材料(MWNTs,GN)复合后表现出明显的电化学协同效应,说明该微/纳级八面体CeO:具有良好的电化学应用前景.