简介:Anonlinearparabolicsystemisderivedtodescribeincompressiblenuclearwaste-disposalcontaminationinporousmedia.Asequentialimplicittirne-steppingisdefined,inwhichthepressureandDarcyvelocityofthemixtureareapproximatedsimultaneouslybyamixedfiniteelementmethodandthebrine,radionuclidandheataretreatedbyacombinationofaGalerkinfiniteelementmethodandthemethodofcharacteristics.Optimal-orderconvergenceinL2isproved.Time-truncationerrorsofstandardproceduresarereducedbytimesteppingalongthecharacteristicsofthehyperbolicpartofthebrine,radionuclideandhealequalios,temporalandspatialerrorarelossenedbydirectcompulationofthevelocityinthemixedmethod,asopposedtodifferentiationofthepressure.
简介:对[0,1]上的L—可积函数ф及α>0定义下列B—D—B算子;本文研究了Mna(ф,x)当α>0时,在LP(0,1](1≤p<+∞)的一致逼近;当α≥1时在LP[O,1]及L1P[0,1]逼近度的量化估计。作者在文[4]中定义了B—D—B算子:其中fnk(X)称为Bézeief基函数文[4]研究的是B—D—B称子在C[0,1]空间中的逼近性质,本文继续[4]的工作,专研究这个算子在LP[0,1](1≤P<+∞)的逼近性质,证明了Mna(фX)当α>0时在LP[0,1]中为一致逼近,并得到了当α≥1时在LP[0,1]及L1P[0,1]中逼近度的量化估计。
简介:本文在L_p(1≤p〈∞)空间上,研究了种群细胞增生中一类具扰动项的一般边界条件下的L-R模型,给出了这类模型相应的迁移方程解的渐近行为等结果.
简介:利用Jensen不等式,Steklov变换,Cauchy积分主值讨论了一类离散指数型线性积分修正插值算子在Orlicz空间L*M(-∞,∞)中的逼近问题,给出了收敛速度的估计.
简介:Inthispaper,weshowthatnewmodifieddoublecosinetrigonometricsumsintroducedin[1]areinappropriate,theclassofdoublesequencesJdintroducedthereisunusableforsuchsumsandconsequentlytheresultsobtainedinitarecompletelyincorrect.WehereintroduceappropriatemodifieddoublecosinetrigonometricsumsmakingtheclassJdusableconsideringaparticulardoublecosinetrigonometricseries.