简介:本文将一个关于两个不交国的单点粘合的图的LPlaCe谱的受控定理推广到了两个国的多点粘合何形;同时证明了相同的结果对目的Q一回也成立。
简介:利用Stroemberg-Torchinsky分解,给出了Triebel空间Fp-q(R^n,X)上算子值傅里叶乘子的一个充分条件.在n〈min(p,q)情形下,这里给出的充分条件改进了之前已知的结果.
简介:文[1]提出一个问题:"如果李代数L的所有幂零子代数都是交换子代数,那么L是否在它的每个理想上可分?"并给出一个反例说明该问题一般不成立.本文就是从分析该反例入手,说明问题不成立的原因,并给出该问题成立的条件,从而在一般情况下给出基本李代数的一个等价刻画.
简介:设R是素环,I是R的非零理想,如果R容许一个非单位映射的左乘子使得对所有x,y∈I满足δ(x°y)=x°y或δ(x°y)+x°y=0,那么R可交换.此外,如果R是2-扭自由的素环,U是平方封闭的李理想,γ是伴随导子非零的广义导子,B:R×R→R是迹函数为g(x)=B(x,x)的对称双导,当下列条件之一成立时U为中心李理想(1)γ同态作用于U(2)2[x,y]-g(xy)+g(yx)∈Z(R)(3)2[x,y]+g(xy)-g(yx)∈Z(R)(4)2(x°y)=g(x)-g(y)(5)2(x°y)=g(y)-g(x)对所有的x,y∈U.更多还原
简介:定义在C^n中具有逐块光滑边界的有界域上光滑函数的一种积分表示,这种积分表示的特点是积分式中含有局部的全纯核,且含有可供任意选择的实参数p,2≤p<+∝,利用这个公式,我们可获得有界域上-↑a-方程的局部解和证明在含参数局部意义下存在一致估计。
简介:讲座了超导中连续Josephson结系统解的渐近行为,利用先验估计证明了当时间趋于无穷时解收敛于对应稳态问题的解。