学科分类
/ 19
374 个结果
  • 简介:设1〈P≤2,0〈n≤1,X是P一致可光滑空间的Banach空间,则对每个X值拟鞅f=(fn)n≥0∈pHn^σ(X)存在分解fn=∑k∈Zμkαn^k(n≥0),并且||f||pHα^σ(X)+||R(f)||α~inf(∑k∈μk^a)^1/a,这里a^k=(an^k)n≥(k∈Z)是一列(1,α,∞;p)拟鞅原子,并且在L^1中收敛,supk∈z||a^k*||n〈∞,(μk)k∈Z∈la是非负实数列.对于拟鞅空间pHa^s(X)和qKn(x)成立类似的结果.此外,利用拟鞅原子分解定理,证明了几个拟鞅不等式.

  • 标签: 拟鞅 原子分解 p一致光滑空间 q一致凸空间
  • 简介:本文利用K-泛函、加权连续模与极大函数等工具,借助不等式技巧,在Orlicz空间内研究了复系数多项式的倒数逼近问题,得到了收敛速度估计的结果.

  • 标签: ORLICZ空间 加权连续模 逼近 多项式
  • 简介:为了刻画和研究平移空间的线性结构,给出了平移半群的概念,在平移半群为满足相消律的交换半群的平移空间上,引入了整数系数的线性结构;再加之,在平移空间上可利用距离在一定条件下构造出线性结构,引入了次范整线性空间的定义;并且证明了平移空间是次范整线性空间的充要条件是它的平移半群是满足相消律的交换半群.

  • 标签: 平移半群 交换半群 平移空间 次范整线性空间
  • 简介:本文利用一种积分平均函数给出了加权Dirichlet空间Dα。(α>-1)上的复合算子Cψ为Schattenp-类算子的充要条件.此结果包含了过去已有的关于Hardy空间及加权Bergman空间Aα(α>-1)上的复合算子的已有结论.主要定理是:设p>0,α>一1,ψεDa,则Cψ为Dα上的Schatten p-类算子的充要条件是存在δ>0,使得积分平均函数Φδ(z)=λ(D(z,δ))=1 integral form n=D(z,δ)τψ,α(ω)d-λ(ω)属于L2p(dv),其中D(z,δ)为伪双曲圆盘,τψ,α为Cψ关于Dα的确定函数;dv(z)=(1-|z|2)-2dλ(z),dλ为D上的就范面积测度.

  • 标签: 加权DIRICHLET空间 复合算子 紧算子 Schatten类算子
  • 简介:本文利用共轭C0半群的扰动理论研究了无界容许控制算子,在太阳自反和非太阳自反Banach空间分别导出了一些容许性判据,并把这些抽象结果应用到了有限和无限延滞方程.

  • 标签: 容许无界控制算子 太阳自反性 对偶C0半群 延滞方程
  • 简介:记B={f:f∈H(D),‖f‖B<∞}为Bloch空间,其中‖f‖B=sup|x|<1(1-|z|^2)|f′(z)|,对于f(z)=^∞∑(k-0)akz^k∈B,定义Cesaro算子B为(Bf)(z)=^∞∑(n=0)(1/(n+1)^n∑(k=0)ak)z^n在这篇文章中,我们将证明如下结果。

  • 标签: BLOCH空间 算子 有界 |X| 证明 文章
  • 简介:本文给出了广义Dunkl—Williams常数与一些著名几何常数例如凸系数、光滑系数、James常数之间的关系,从而得到一些蕴含不动点性质的充分条件,另外通过广义Dunkl-Williams常数的上下界的估计给出了Banach空间一致非方的刻画.

  • 标签: 广义Dunkl-Williams常数 凸系数 光滑系数 James常数 一致非方 不动点
  • 简介:本文研究了k-非常极凸空间的问题,利用k维体积定义了k-非常极凸空间,使用k-非常极凸的概念,得到了k-非常极凸空间的性质和一些特征,推广了k-drop凸空间.

  • 标签: κ维体积 κ-非常极凸 κ-drop凸
  • 简介:对于D上的Carleson测度μ而言,本文研究在加权Bergman空间Aα~2(D)上具有符号μ的Toeplitz算子Tμ的一些特殊的性质.近几年,在加权Bergman空间Aα~2(D)上的Toeplitz算子的有界性和紧性已经被广泛研究.为了了解Toeplitz算子Tμ的一些其他性质,本文需要估算出单位圆盘的加权Bergman空间上Toeplitz算子的本性范数的界限.

  • 标签: TOEPLITZ算子 本性范数 加权BERGMAN空间
  • 简介:利用连续线性泛函满足的某些条件,给出了关于m-增生、奇算子的一些映射结果,这些结果是对已有文献中相应结果的改进.其中第二节中考虑了算子的奇性,运用Borsuk定理得出了m一增生、奇算子的映射定理;在第三节中讨论了凝聚映射的相应结果.

  • 标签: M-增生算子 奇算子 凝聚映射 紧映射 度理论