学科分类
/ 7
131 个结果
  • 简介:超细粉体随其颗粒粒度减小,自发团聚趋势更加明显。改善粉体的分散性是实现超细粉体分级的前提,也是实现工业化应用的关键。论文作者探讨了粉体团聚和分散的作用机理,分析、比较了超细粉体在空气中和液相中的分散方法及适用范围,认为对于粒径≤2μm的超细粉体,因颗粒间的范德华引力比重力大几百倍,因而不会因重力而分离,只宜采用在液相中分散的方法使之分散,其分散途径有:通过改变分散相与分散介质的性质来调控HAMAKER常数,使其值变小,颗粒间吸引力下降;调节电解质及定位离子的浓度,促使双电层厚度增加,增大颗粒问的捧斥力;选用与分散颗粒和分散介质均具有较强亲和力的聚合物电解质,通过空间位阻和静电协同作用来达到优异的分散效果。

  • 标签: 超细粉体 分散 团聚
  • 简介:采用压痕裂纹(IM)法测定了无压烧结ZrO2基陶瓷的断裂韧性(K1c),并引入相对偏差概念表征K1c值的精确度.结果表明,由于ZrO2基陶瓷的压痕裂纹具有巴氏裂纹特征,因而只能选择Niihara(P)方程(P表示巴氏裂纹)、Shetty方程、Laugier方程或Marshall方程等来计算K1c.其中,用Niihara(P)压痕方程计算的K1C值最符合实际,且具有最小的相对偏差.因此,正确判断压痕裂纹类型、选择合适的压痕方程及科学处理实验数据等,都将有利于提高压痕断裂韧性的测定精度.

  • 标签: 压痕裂纹法 断裂韧性 相对偏差 ZRO2
  • 简介:基于金刚石钻头干钻时出现较高摩擦热的现象,采用MoS2作为胎体润滑剂,用电镀法制备MoS2-Ni复合胎体材料,以减小胎体的摩擦因数、降低摩擦热;并研究电镀工艺对MoS2复合镀层的显微硬度和低温低压下复合镀层对胎体摩擦性能的影响。结果表明:随镀液中MoS2浓度增大,镀层的显微硬度和胎体的摩擦因数降低,当MoS2浓度大于0.5g/L时,镀层的显微硬度和胎体的摩擦因数变化不大;随镀液pH增大,镀层显微硬度降低,胎体的摩擦因数先减小后增大,当镀液pH增大到4.0后,镀层的显微硬度变化不大,胎体摩擦因数达最小值;随镀液电流密度增大,镀层显微硬度和胎体摩擦因数先减小后增大,当电流密度增大到2.5A/cm2时,镀层的显微硬度和胎体摩擦因数达到最小值。摩擦磨损后的胎体材料形貌分析表明,控制好电镀工艺条件,可实现低温低压下MoS2-Ni复合材料对胎体的润滑作用。

  • 标签: 低温低压 电镀 MOS2 金刚石钻头 摩擦性能
  • 简介:微波合成因合成速度快、清洁和能效高而成为一种非常有前途的材料制备方法。与常规方法相比,很多材料可以在相对较低的温度和较短的时间内用微波加热合成。该文作者利用混合微波加热技术,在短时间内由镁粉、镍粉和石墨粉合成了具有立方钙钛矿结构的金属间化合物超导材料MgCNi3。利用微波加热合成的MgCNi3,镁的挥发和氧化程度明显减少。粉末X射线衍射显示合成的样品主相为MgCNi3,还含有少量未反应的石墨粉和微量的MgO杂相。金相显微镜和扫描电镜观察表明超导样品的晶粒大小一般为2~6μm。由标准的四探针电阻方法和磁测量技术测得样品的超导起始转变温度为6.9K,转变宽度约为0.8K。

  • 标签: 微波合成 MGCNI3 超导体
  • 简介:采用溶胶–凝胶法对盐酸预处理后的活性炭(activatedcarbon,AC)进行负载TiO2改性处理,利用扫描电镜(SEM)、能谱分析(EDS)、比表面积及孔径测试(BET)、热重分析(TG/DTG)、傅立叶红外光谱分析(FTIR)等对负载TiO2前后的活性炭结构与理化性能进行表征,并利用电化学工作站测试其电化学性能。结果表明,凝胶的最佳煅烧温度为450℃,制得的TiO2/AC复合体表面及孔道中有絮状或颗粒状的TiO2存在,Ti元素含量(质量分数)为24.91%,晶体类型为锐钛矿型;同时,TiO2/AC表面形成一些Ti—O键的含氧官能团。活性炭负载TiO2改性后,比表面积降低23.1%,比电容升高16.4%,电吸附性能提高,可作为电极材料用于去除废水中的无机盐离子。

  • 标签: 溶胶–凝胶法 预处理 TIO2/AC 比电容
  • 简介:通过非自耗磁控电弧炉熔铸和700℃,20h高温退火处理,制备出含铬18%~30%(质量分数)含Laves相TiCr2过共析钛铬合金,并研究其中的组织变化规律.研究结果表明,稳定化系数为2.57~4.62的过共析钛铬合金经过熔炼后,在随炉冷却的条件下得到的是单相β-Ti组织;铸态合金在700℃保温退火时,金属间化合物TiCr2不仅沿晶界生成并形成连续分布,还将在基体内部弥散析出;在随后的空冷过程中合金内局部会发生β-Ti→α-Ti+TiCr2共析分解.合金含铬量越高,在高温退火时析出的TiCr2量越多,粒径越大,合金的硬度也越高.电弧熔炼加上700℃,20h高温退火是一种制备含Laves相过共析钛铬合金的可行工艺.

  • 标签: 钛铬合金 共析转变 TiCr2 Α-TI β-Ti
  • 简介:对厚度为25mm的T851态2A97铝锂合金进行搅拌摩擦焊焊接,利用显微硬度、金相显微镜(OM)和透射电镜(TEM)等对焊缝的显微硬度和微观组织进行研究。结果表明:接头基材硬度最高,热影响区和热机影响区硬度降低,焊缝中心硬度又升高,硬度最低位置在热影响区。焊核区发生动态再结晶,形成细小等轴的晶粒;焊核区S′相全部溶解,T1相几乎全部溶解,在随后的冷却和时效过程中,焊核区析出GP区和细小弥散的δ′相;热影响区的T1相部分溶解,S′相全部溶解,析出θ″相、δ′相和δ′/β′的复合相。

  • 标签: 搅拌摩擦焊 铝锂合金 微观组织
  • 简介:以钛酸丁酯为前驱体,聚乙二醇(PEG)2000为添加剂,采用溶胶-凝胶法制备TiO2薄膜,研究PEG2000的添加量对TiO2薄膜性能的影响。通过热重分析仪、X射线衍射仪(XRD)、比表面积及孔结构分析仪(BET)、扫描电镜(SEM)、接触角分析等手段对薄膜的热稳定性、晶相变化、比表面积、孔结构、表面形貌和亲水性进行表征。结果表明:随PEG2000添加量增加,TiO2薄膜锐钛矿晶型转变为金红石晶型的温度升高,薄膜表面从致密平滑转变为开裂粗糙,比表面积持续增大,平均孔径则减小,接触角由3°增至20.2°;当PEG2000的添加量为5%时,TiO2薄膜的性能最佳,表现出超亲水性。

  • 标签: TIO2薄膜 聚乙二醇 表面形貌 亲水性 热学性能
  • 简介:以Mo、Nb、Si、Al元素粉末为原料,采用燃烧合成法制备名义成分分别为(Mo0.97Nb0.03)(Si0.97Al0.03)2、(Mo0.94Nb0.06)(Si0.97Al0.03)2、(Mo0.91Nb0.09)(Si0.97Al0.03)2与(Mo0.88Nb0.12)(Si0.97Al0.03)2等4种不同化含量的合金,研究其燃烧合成行为,分析燃烧合成过程中粉末压坯的燃烧模式、燃烧温度、燃烧波前沿蔓延速率以及产物组成。结果表明:随Nb含量增加,燃烧合成反应模式由螺旋燃烧逐渐转变为稳态燃烧。添加Nb、Al后,合金的最高燃烧温度升高,并随Nb含量增加呈现先升高后降低的变化趋势,其中(Mo0.91Nb0.09)(Si0.97Al0.03)2的燃烧温度最高,达到1924K,但燃烧波蔓延速率随Nb含量增加而逐渐降低。XRD结果表明:(Mo0.97Nb0.03)(Si0.97Al0.03)2合金主要由MoSi2构成,含有少量Mo(SiAl)2和Mo5Si3;(Mo0.94Nb0.06)(Si0.97Al0.03)2中开始出现NbSi2相,(Mo0.91Nb0.09)(Si0.97Al0.03)2和(Mo0.88Nb0.12)(Si0.97Al0.03)2合金中Mo5Si3的衍射峰强度进一步降低,而NbSi2的衍射峰略有增强,因而添加Nb有利于形成C40结构的NbSi2,同时抑制Mo5Si3的产生。SEM观察表明合金为多孔结构。

  • 标签: 金属间化合物 二硅化钼 合金化 燃烧合成 组织结构
  • 简介:TiO2电极片的制备是熔盐电脱氧法制备金属钛的重要环节。本文采用单向模压工艺制备TiO2电极片,利用排水法、SEM、XRD等测试手段,研究成形压力、烧结温度、烧结时间、掺杂及造孔剂引入,对烧结后电极片的孔隙率、生坯密度、孔径大小、微观组织形貌和颗粒尺寸的影响。研究结果表明,TiO2中掺入5%碳粉,在30MPa压力下成形,950℃烧结4h制得的电极片具有合适的孔隙率、物相组成和微观结构,满足电解要求。

  • 标签: 熔盐电脱氧 成形压力 烧结时间 烧结温度 孔隙率
  • 简介:以Ti-Al的3个化合物相(Ti3Al、TiAl和TiAl3)及Ti3Al8Mn为对象,采用密度泛函的赝势平面波法,在优化驰豫的基础上计算其电子结构和弹性模量,系统分析成分对各相电子结构的变化及脆性的影响。结果表明:Al含量逐步增多导致Al2p—Ti3d成键并抑制Ti—Ti键,使共价键以及成键的各向异性增强,因而使合金脆性增大;Mn替代Al位掺杂后,可减少Al—Al共价键,抑制Al2p—Ti3d成键并增强Mn与Ti的3d电子层杂化程度,降低由Al—Al共价键和Al2p—Ti3d杂化键形成所带来的键的空间各向异性和高位错能垒,进而改善合金的室温脆性。

  • 标签: 密度泛函 TIAL合金 MN掺杂 室温脆性
  • 简介:采用编织-粉料铺填法制备Cf/ZrB2预制体,经过“浸渍-炭化”制得C/C-ZrB2复合材料,研究材料的微观结构与力学性能、抗氧化性能和抗烧蚀性能。结果表明:ZrB2颗粒由树脂炭包裹,在C/C-ZrB2复合材料内部均匀分布。材料的氧化质量损失率随氧化时间延长呈线性增长,在1100℃温度下氧化10min和60min后质量损失率分别为2.67%和20.47%。该材料的抗弯强度为81.1MPa,氧化10min后抗弯强度仍保持在氧化前的80%,氧化前后均呈假塑性断裂模式。ZrB2粉体的加入可显著改善C/C复合材料的抗烧蚀性能,等离子烧蚀120s后,其质量烧蚀率和线性烧蚀率分别为0.30mg/s和8.75μm/s。玻璃态ZrO2的阻氧作用以及B2O3的挥发吸热是复合材料主要的抗烧蚀机理。

  • 标签: C/C-ZrB2复合材料 抗氧化性能 抗弯强度 等离子烧蚀
  • 简介:采用溶胶-凝胶工艺首先制备La0.85Ag0.15MnO3和(Ba0.7Sr0.3)3Ni2Fe24O41的前驱体,经煅烧制得由钙钛矿结构的La0.85Ag0.15MnO3稀土锰氧化物和Z型六角铁氧体(Ba0.7Sr0.3)3Ni2Fe24O41组成的复合材料,利用X射线衍射仪和扫描电镜分别分析其微结构和形貌;使用矢量网络分析仪系统测量该复合材料的微波电磁参数和吸波性能,并对影响其微波吸收性能的主要因素及作用机理进行研究与分析。结果表明:1250℃的煅烧温度下,La0.85Ag0.15MnO3含量(质量分数)为40%的复合材料的微波吸收峰值达-30dB,在2~18GHz频段小于-10dB的吸收频宽为3.9GHz,微波吸收性能明显优于La0.85Ag0.15MnO3单相材料和Z型六角铁氧体(Ba0.7Sr0.3)3Ni2Fe24O41单相材料;复合材料中存在介电损耗和磁损耗共存与协同作用,以及界面效应和磁电耦合作用,有利于介电常数调控和阻抗匹配优化,从而提高微波吸收性能。

  • 标签: LaMnO3掺杂 Z型六角铁氧体 双相复合 微波吸收
  • 简介:采用超高重力场燃烧合成工艺,并从500g到2500g每间隔500g依次增大超重力场加速度,制备系列TiC-TiB2凝固陶瓷。经XRD、FESEM和EDS分析,发现陶瓷显微组织均由片晶的TiB2基体相、不规则的TiC第二相及少量的Al2O3夹杂与Cr基金属相组成。增大超重力场加速度,反应熔体内部各组份之间的对流(Stokes)加强,可加快Al2O3液滴的上浮与分离,促进TiC-TiB2-Me液相成分均匀化,使陶瓷显微组织得以细化,且当超重力场加速度超过2000g时,出现TiB2片晶厚度小于1μm的超细晶组织,同时随陶瓷基体上Al2O3夹杂量降低、TiB2片晶异常长大弱化,陶瓷组织均匀性提高。经FESEM断口形貌与裂纹扩展观察,发现TiB2基体相的裂纹桥接与拔出,并耦合晶间Cr基延性相增韧构成陶瓷的复合增韧机制,且随超重力场加速度增大,陶瓷的致密性与组织均质性得以提升,不仅促进TiB2基体相裂纹桥接与拔出,而且可增大Cr基延性对陶瓷增韧的贡献,使得陶瓷弯曲强度与断裂韧性分别同时达到最大值(975±16)MPa和(16.8±1.2)MPa·m^1/2

  • 标签: TiC-TiB2复合陶瓷 超高重力场 燃烧合成 组织均质性 断裂行为
  • 简介:利用粉末冶金法制备TiB2和TiC复合材料熔敷棒,并通过电火花沉积在点焊镀锌钢板用电极的表面制备TiB2和TiC复合涂层。利用SEM和XRD分析涂层的微观结构和物相,运用点焊实验测试涂层电极的使用寿命。结果表明:复合材料熔敷棒中TiB2和TiC颗粒细小均匀,电火花涂层致密无分层,涂层物相为Cu、TiB2和TiCCu从基体扩散到涂层表面,涂层表面Cu含量(原子分数)达到28%,过渡层出现Cu和Ti的梯度分布,涂层与基体间为牢固的冶金结合复合涂层存在少量裂纹,其显微硬度达到850HV,高于TiB2涂层和TiC涂层硬度点焊时电极头部的平均磨损率大大降低,电极的点焊寿命比无涂层电极提高4倍。

  • 标签: 镀锌钢板 点焊电极 碳化钛 二硼化钛 复合涂层 电火花沉积
  • 简介:通过热压烧结工艺制得了(SiCp+C)/MoSi2复合材料,测试分析了材料的组织结构、室温和高温力学性能.结果表明:(SiCp+C)/MoSi2复合材料主要由MoSi2(大量),α-SiCp(大量),Mo5Si3(多量)和β-SiC(少量)组成,密度为5.12g/cm3,相对密度为91%;增强相的粒径<30μm,体积分数为39%.其室温硬度、抗弯强度和断裂韧性分别为12.2GPa,530MPa和7.2MPa·m1/2;材料在800℃的维氏硬度为8.0GPa,1200和1400℃的抗压强度分别为560MPa和160MPa.与非增强MoSi2相比,材料的各种力学性能都有大幅度的提高.

  • 标签: 二硅化钼 碳化硅 复合材料 力学性能
  • 简介:采用粉末冶金方法在常压H2气氛下制备W-TiC合金,研究W-TiC合金的烧结致密化行为,并对合金的性能和组织结构进行分析。结果表明:添加微量强化烧结元素可改善W-TiC合金的烧结活性,在1700℃烧结120min后其相对密度达到99.2%;随着烧结温度的升高,W-TiC合金的拉伸强度提高,在2000℃烧结120min后,拉伸强度达到464MPa;TiC颗粒可有效地抑制合金烧结过程中的晶粒长大。

  • 标签: W-TiC合金 致密化行为 微观组织 力学性能
  • 简介:以SiO2、碳黑和少量添加剂(CaO,MgO或Al2O3)为原料,在流动氮气中于1350~1550℃下,对SiO2碳热还原-氮化产物进行了研究.结果表明,试样S-1,S-2分别在1400℃和1450℃加热4h后,均生成Si2N2O和Si3N4混合物;在1550℃保温4h,这2种试样生成的产物均为SiC.试样S-3在140℃和1450℃加热4h后所得产物为Si3N4和SiC.氧化物添加剂可以促进碳热还原-氮化反应的进行,并保留在生成的粉末体中,在随后的粉末热压或无压烧结中起烧结助剂的作用.

  • 标签: 二氧化硅 碳热还原-氮化 添加剂 氮化硅
  • 简介:以钼粉及氧化锆粉为原料,采用不同的烧结工艺参数,在常压氩气气氛下烧结制备50%Mo-ZrO2金属陶瓷。采用四电极法测量该金属陶瓷的高温电导率,在1580℃下进行钢液和碱性熔渣侵蚀实验。结果表明:在烧结温度为1600~1650℃,保温时间为2~4h的条件下,随保温时间延长或烧结温度升高,烧结体更加致密,孔隙率下降;因而金属陶瓷的电导率提高,耐钢液和熔渣侵蚀性增强;在1600℃、保温4h条件下烧结的试样密度最大(6.49g/cm^3),高温电导率最高(1600℃下的电导率为101S/cm),耐钢液和熔渣侵蚀能力最强。钢液对金属陶瓷的侵蚀主要为Fe和Mo的相互溶蚀,熔渣对金属陶瓷的侵蚀主要作用于ZrO2陶瓷相,熔渣中的Al2O3取代金属陶瓷中的ZrO2。熔渣侵蚀过程中,CaO与金属陶瓷中的ZrO2发生反应生成高熔点CaZrO3相,阻止熔渣对金属陶瓷的进一步侵蚀。

  • 标签: Mo-ZrO2金属陶瓷 钢液 熔渣侵蚀 断口形貌 烧结工艺
  • 简介:以Ti粉、Al-V合金粉及Mo粉为原料,通过冷等静压和真空烧结制备Ti-3Al-5Mo-4.5V(TC16)合金,并对该合金的组织与力学性能进行研究。结果表明,粉末冶金TC16合金具有由α相和β相组成的网篮组织,相对密度约为93.5%,抗拉强度、屈服强度和伸长率分别为1062MPa,973MPa和2.3%,关键性能(屈服强度)达到铸造TC16合金水平。

  • 标签: 粉末冶金 钛合金 相对密度 微观组织 力学性能