简介:利用T639业务数值模式预报场和大风观测资料,分别采用%雷暴大风指数和多个对流指数方法,计算相对应的指标值,建立淮北市夏半年大风预报方法,得到淮北市大风的短期预报结果,并对2011年的预报应用情况进行检验。结果表明:基于T639业务数值模式的Iw大风指数与多指标的叠加,实现夏半年定量和定性的大风预报。将多种不稳定指标与T639数值模式相结合的叠加预报,当4个指标中有3个满足条件时预报淮北有大风出现,否则没有大风;Iw大风指数的风速预报与实际极大风速较为接近。两种预报方法对淮北市的大风预报具有较好的指导作用,多数大风天气能够准确预报,但空报较多,漏报较少。
简介:以中国夏季气温为预测对象,选取东亚地区冬季500hPa高度场、海平面气压场、地表温度场和850hPa温度场为预测因子,采用1951~2009年去趋势处理后的资料,通过变形的典型相关分析(Barnett-PreisendorferCanonicalCorrelationAnalysis,BP-CCA)方法分别建立单因子预测模型,再利用集合典型相关分析(EnsembleCanonicalCorrelation,ECC)方法建立集合预测模型,对中国夏季气温进行基于交叉检验方法的预测试验,然后利用2010~2014年的资料对中国夏季气温进行独立样本检验。通过分析BP-CCA模态可知,一对BP-CCA模态的空间型在一定程度上可以反映预报因子场和对象场的遥相关特征。通过基于交叉检验方法的预测试验表明环流场和热力场均能为气温提供预测信息。ECC预测模型综合了各个预报因子的在不同地区的预报技巧,比单因子BP-CCA预测模型有更高、更稳定的预报技巧。独立样本检验表明ECC模型与单因子BP-CCA预测模型相比,对中国夏季气温有更高、更稳定的实际预测能力,对气温季节预测具有参考价值。