简介:研究了一类具偏差变元的非自治Rayleigh方程x^n(t)+f(t,x'(t))+g(t-τ(t))=p(t)的周期解问题,利用Mawhin延拓定理和一个改进的先验估计,获得了一些新的结果.同时也改进并推广了已有文献中的一些结果.
简介:研究描述聚合物流体的一维时间发展Smoluehowski方程,说明当初值如果用Fourier级数展开时不含2模频率,那么其稳态解是一个常数,其对应于各项同性的相.
简介:本文研究常微分方程组情形的Ambrosetti-Prodi型问题.在非线性项超线性,凸性等条件下.得出随着参数的变化。问题无解,有唯一解,至少有两解的结论。
简介:本文用动力系统方平面分支方法,研究一个广义Vakhnenko方程的圈波.在p=3的参数条件下,获得了精确的周期圈波和圈孤子解的表达式,作出了周期圈波和圈孤子的平面图形,直观的显示了这两种解的动力学性质.本文的结果丰富了广义Vakhnenko方程的研究.