学科分类
/ 20
399 个结果
  • 简介:使用Chebyshev-Gauss(CG)伪谱法研究带动量轮和推力器欠驱动航天器姿态最优控制问题.基于欧拉姿态角和动量矩定理导出两类航天器姿态运动模型,采用Clenshaw-Curtis积分近似得到性能指标函数中积分项,应用重心拉格朗日插值逼近状态变量和控制变量,将连续最优控制问题离散为具有代数约束非线性规划(NLP)问题,通过序列二次规划(SQP)算法求解.数值仿真结果表明,对两类欠驱动航天器姿态机动最优控制均能达到设计控制要求,得到姿态最优曲线与验证得到曲线几乎完全重叠.

  • 标签: Chebyshev-Gauss伪谱法 欠驱动航天器 姿态机动 最优控制
  • 简介:研究了由色关联色噪声驱动双稳杜芬模型稳态概率密度函数状态变量均值和标准方差.首先应用一致有色噪声近似方法,推导出了具有色关联色噪声驱动双稳杜芬模型稳态概率密度函数解析表达式.分析了噪声"有色性"关联性对稳态密度函数和状态变量均值、标准方差影响,发现了一些由白噪声激励杜芬模型中不会出现非线性现象:加性噪声强度、噪声之间关联系数和关联时间都能够诱导非平衡相变.

  • 标签: 色噪声驱动 色关联 模型 稳态分析 双稳 概率密度函数
  • 简介:探讨了摆非线性振动方程新解法.由此方程和初始条件着手,可推导出一系列派生性质,它们包括:最大位移,最大速度,初始加速度和相平面上相轨线.把近似运动表成Fourier级数形式,其中圆周频率也是待定.令近似运动满足这些派生性质,便可以定出待定Fourier系数和圆周频率.文中提出了4参数法和5参数法,即:4个或5个待定Fourier系数和圆周频率.分析计算表明,4参数法己有较高精度,5参数法结果己和精确解相差甚微.

  • 标签: 非线性振动方程 性质 派生 FOURIER级数 参数法 初始条件
  • 简介:对含Karnopp摩擦柔性滑移铰系统进行动力学建模和仿真.将滑移铰中滑块视为柔性体,滑道视为刚性接触面,考虑滑道与滑块之间间隙.由于柔性滑块与滑道接触状态和摩擦情况比较复杂,采用有限元方法建立了柔性滑块力学模型,基于罚函数方法建立含Karnopp摩擦柔性滑移铰接触力模型,通过试算迭代法判断柔性滑块各节点接触状态,基于KED方法和Newmark方法给出了含该滑移铰机械系统动力学方程数值算法.最后,以含Karnopp摩擦柔性滑移铰和驱动摆杆构成机械系统为例进行动力学仿真,分析了其动力学特性,验证了本文给出方法有效性.

  • 标签: 柔性滑移铰 Karnopp摩擦 间隙 有限元
  • 简介:提出了一个新加速增长加权网络模型.与以前边权固定模型或边权局部分配模型相比,该模型允许流被全局更新,并给出、边权、与点强度分别服从幂律分布.特别地,这些幂律指数是非普适而且依赖于两个网络参数.该模型还指出点强度高度依赖于并且它们之间服从幂律关系,这与许多实证研究结果相符.数字仿真验证了理论预测正确性.

  • 标签: 加权演化网络 边权全局演化 加速增长的网络 幂律分布
  • 简介:通过海洋平台顶部安装主动调谐质量阻尼器(AMD),研究了平台在冰荷载作用下主导模态H∞控制.首先采用H∞方法与模态空间平衡降阶法进行控制设计,然后基于虚拟激励法得到了系统冰致振动解答,并应用此解答进行了广泛参数研究,确定了平台减振效果最佳时H∞控制器最优参数.通过该应用特例,以评价H∞控制器有效性.结果表明如果H∞控制器参数选择合适,则可以显著减小平台冰致振动响应.

  • 标签: 平衡降阶法 H∞控制 模态空间控制 冰致振动 海洋平台
  • 简介:基于有限元基本理论,用ANSYS软件对(P/FGM/P)型带压电层功能梯度材料悬臂板结构进行了模态分析,这里选用SHELL99单元类型.给出(P/FGM/P)型带压电层FGM悬臂矩形板振动模态图,得到固有频率,并且对前8阶模态做模态分析,讨论了其对结构动力学行为影响.通过模态分析可以得知带压电层FGM悬臂矩形板模态振型有横向振动,扭转振动,拉伸振动,横向振动以前两阶模态为主,分析结果对系统结构设计与优化以及振动特性研究提供了有效依据.

  • 标签: 功能梯度材压电材料 悬臂板 ANSYS 模态分析
  • 简介:基于动力系统稳定性理论、数值计算分岔图和线性化系统最大Lyapunov指数,研究了经兴奋性化学耦合快峰神经元同步动力学.研究表明,随着一些关键参数改变,耦合神经元能呈现丰富同步行为,如各种周期同步和混沌同步.研究结果对理解神经元系统同步运动具有指导意义.

  • 标签: 快峰神经元模型 兴奋性化学突触 同步
  • 简介:以飞行器机翼作为工程背景,将机翼简化为悬臂板模型,研究了受横向电压激励、基础激励、面内激励联合作用下复合材料层合悬臂板非线性动力学问题.首先建立其动力学模型,考虑冯-卡门大变形理论,利用Hamilton原理建立复合材料层合悬臂板非线性动力学方程;选择符合边界条件模态函数,利用Galerkin方法对系统进行四阶离散,得到四自由非线性常微分方程;代入系统实际物理参数,应用MATLAB软件数值模拟得到系统振动幅值随电压激励变化分叉图,由图可知,电压激励使系统从混沌运动变为倍周期运动,降低了系统振幅,保持系统稳定.

  • 标签: 悬臂板 HAMILTON原理 分叉 非线性动力学 混沌
  • 简介:Pre-Botzinger复合体中兴奋性神经元节律性簇放电与呼吸节律产生关系密切.泄漏电流对神经元簇放电具有重要调节作用.本文利用双参数分岔分析和快慢变量分离等方法,研究了泄漏电流对耦合神经元簇同步模式及其转迁机制影响.结果表明,不同初始条件下,当泄漏电导改变时耦合神经元分别表现为同相“fold/homochnic”型、“subHopf/homoclinic”型和反相“fold/foldcycle”型和“subHopf/foldcycle”型簇放电.本文研究为进一步探索呼吸节律产生机制提供了一些见解.

  • 标签: 簇放电 双参数分岔 快慢变量分离 pre—BiStzinger复合体 呼吸节律
  • 简介:构建了带有延迟脉冲控制三维股票价格系统,研究了脉冲控制参数和延迟变化对股票价格稳定性影响.应用脉冲微分方程控制稳定性理论,得到了带有延迟脉冲控制系统中,由原先不稳定和发散达到稳定保守且充分条件,从而使股票金融市场达到了一个新持续发展稳定状态.利用Matlab软件对该系统进行数值仿真,验证了脉冲控制方法可行性,有效性和提出理论准确性.结果表明合理脉冲控制可以有效控制带延迟系统稳定性.

  • 标签: 延迟 股票价格系统 脉冲微分方程 控制 稳定性
  • 简介:讨论了一个两自由含立方非线性项受迫振动系统,设计了反馈控制器,对弱非线性系统用近似解析方法求出了控制系统幅值控制方程,得到了控制参数与幅值函数关系,实现了反馈控制法多自由非线性系统鞍结分岔控制中应用,证实了多尺度摄动法对多自由非线性系统鞍结分岔控制有效性和适用性.

  • 标签: 单频外激励 耦合 鞍结分岔 振动幅值 反馈控制
  • 简介:主要考虑弯曲变形细长轴向运动梁,可以作为工程中广泛应用在航天器天线、液体输送管道、汽车驱动带、电梯缆索等简化机构.对轴向运动柔性梁线性微分方程,采用复模态分析方法导出两端简支和固支边界条件下固有频率方程;采用Ritz法建立轴向运动梁有限单元法模型.基于该模型多种边界条件下进行梁横向振动分析,并开展定点激励下激励功率谱辨识.仿真结果表明,与传统Galerkin截断方法相比.有限元方法能够克服分析方法建模困难,对复杂边界梁进行有效分析,对激励功率谱能够有效地辨识.

  • 标签: 轴向运动梁 复模态 有限元 复杂边界 功率谱辨识
  • 简介:一个可调节速度皮带驱动干摩擦振子系统,设其干摩擦力大小是常值且两个激励频率是谐调,本文对这个简单力学模型进行了研究,分析了Filippov系统中可能出现四种余维-1sliding分岔并给出数值模拟.分析表明:该系统具有极其丰富sliding分叉现象,较小激励频率易引起非光滑分岔现象.

  • 标签: 非光滑系统 余维-1sliding分岔 Filippov系统
  • 简介:研究一类混合非完整系统运动.它可分为3个阶段:第1阶段为完整系统连续运动,第2阶段为冲击运动,第3阶段为非完整系统连续运动.后一阶段初始条件由前一阶段运动终了条件确定.举例说明结果应用.

  • 标签: 非完整系统 混合 连续运动 冲击运动 初始条件 一阶
  • 简介:研究了具有有界耦合函数不确定复杂动态网络脉冲同步问题.根据脉冲控制概念和脉冲微分方程稳定性理论,我们利用一个灵活有效脉冲控制实现了复杂动态网络脉冲同步.最后,通过对混沌系统做网络节点动态网络数字模拟,验证了我们提出脉冲控制方案有效性和实用性.

  • 标签: 复杂网络 同步 脉冲控制
  • 简介:用一个分段线性单峰映射描述了二次映射Feigenbaum吸引子数学结构,证明了存在一个周期2n正则Fμ-圈嵌套序列,由其生成吸引极小Cantor集与单边符号空间一个所谓"加法器"拓扑共轭.对现有结果作了若干补充和简化证明.

  • 标签: 二次映射 Feigenbaum吸引子 加法器
  • 简介:首先基于Euler-Bernoulli原理,建立了一柔性悬臂梁撞击系统动力学方程,并给出了模态分析方法;然后若干基本假定和定义基础上,利用Karhunnen-Loève展开这一正交分解手段,给出了体现动力系统主要特征降阶模型,可将系统本征值进行新表述;最后将所提方法应用于柔性悬臂梁撞击系统降阶分析过程中,并给出了相应数值例题.结果表明:本方法可以用少量模态准确模拟可控系统动力学特性,可为系统控制研究提供基础.

  • 标签: 降阶方法 撞击 ve 柔性梁 柔性悬臂梁 动力学方程
  • 简介:数字采样控制是当代主流控制技术,具有变更控制律方便、可靠性高、实时性好、抗干扰能力强等特点.本文研究基于采样PD反馈倒立摆控制系统自平衡问题,其受控方程是一类具有时变时滞时滞微分方程,其时滞是分段线性函数.首先将闭环系统方程转化为一个差分方程,然后研究了时滞量和采样周期对差分方程稳定性区域影响,进而给出了使差分方程具有最快收敛速度最优增益计算方法,最后研究了时滞量和采样周期对差分方程收敛速度影响.数值算例表明,时滞量和采样周期对倒立摆控制系统稳定性以及收敛速度具有重要影响.

  • 标签: 倒立摆 采样控制 时滞 稳定区域 最优增益
  • 简介:提出一种新类Lorenz系统,它具有三维二次型自治常微分方程组形式.理论分析中,应用Lyapunov判定方法研究了系统平衡点稳定性.在此基础之上,数值仿真表明,文中所考查动力学系统具有极其丰富动力学现象,包括混沌和多种形式周期运动形式.文中还分析了两个重要参数对系统稳定性影响,并通过构建一个受控系统分析了系统混沌吸引子形成机制.

  • 标签: 类LORENZ系统 混沌 形成机制 稳定性