简介:采用Hodgkin-Huxley神经元模型,在二维随机神经网络中引入局部扩散功能缺陷,研究了神经网络中非对称缺陷附近的方形失去扩散功能的缺陷对螺旋波动力学行为的影响.缺陷使螺旋波降低传播速度的行为与缺陷的位置和尺寸有关:靠近螺旋波中心的缺陷影响最为显著,当缺陷远离中心位置时,缺陷的作用明显减弱;缺陷尺寸越大,影响也越显著.同时观察到,在弱耦合神经网络中,缺陷的存在导致了螺旋波的漂移现象.进一步研究缺陷和通道噪声同时存在时系统时空斑图的演化行为,结果发现,噪声作用下缺陷处形成了新的波源.最后,通过分析神经元放电节律和平均膜电位的变化揭示了缺陷对神经网络时空行为影响的机理.
简介:基于sinh-Gordon方程的椭圆函数解,构造新的试探解来扩展sinh-Gordon方程展开法.利用该方法研究了KdV-mKdV方程,双sine-Gordon方程和BBM方程,获得了这些方程的新Jacobi椭圆函数解.该方法也能用来求解其他数学物理中的非线性演化方程.
简介:分析了一个新混沌系统的超混沌动力学行为,给出了这个未知参数的超混沌系统的自适应控制和同步问题的数值模拟结果.运用相图、分岔图、Lyapunov指数谱和庞加莱截面图,返回映射和功率谱等揭示了系统混沌行为的普适特征,基于Lyapunov稳定性理论,采用自适应控制方法将系统的混沌运动控制到一个不稳定的平衡点.此外,设计自适应控制律以实现超混沌系统的状态同步,仿真结果表明所提出的方法的有效性.