简介:矿井智能通风系统是矿井地下开采的主要系统,实现矿井通风智能化是实现智能开采、建设智慧矿山的主要技术保障,主要涉及主通风机系统的倒机智能化、局部通风智能化、矿井巷道通风匹配智能化.为了提升主通风机系统的倒机智能化水平,针对北方寒冷地区煤矿风门被冻住的问题,提出具有加热功能的风门以防止风门被冻住,通过仿真研究对比了单出口结构和多出口结构的内部加热结构散热效果,优选出单出口结构的加热风门为实施方案,为实现一键倒机的自动实现提供基础,在此基础上研究并提出了基于防冻风门的不停风倒机控制工艺.针对局部通风机智能调节,提出了基于机械控制方式的叶片角度控制方式,能够实现两级风叶角度单独控制,增大了风机调控范围.以上研究成果在兴峪煤矿落地实施,实现了上述方案在工业上的应用,并取得良好效果,为矿井智能通风系统及其应用提供了新思路.
简介:煤炭中混入的各种杂物不仅影响煤炭质量,还会对煤炭加工设备、运输工具造成损害,甚至引发安全事故,有效排除煤中杂物是煤炭生产亟待解决的关键问题.杂质脱除的难易程度随着科学技术的发展而发生着变化,也决定着除杂选用的方法与手段.传统的除杂很大程度上依靠杂质的物理性质,金属类杂物一般采用除铁器清除,跳汰分选与浅槽分选过程可清除部分轻质杂物,拦杂钩和拦杂网也可清除部分轻质杂物,往往多种方法联合使用,发挥各自的优势.随着人工智能技术的发展,通过实时捕获杂物的图像和三维数据,运用计算机视觉算法对杂物进行快速、准确的识别与定位,随后指导机械手进行精准抓取,可实现杂物的精准分离.该方法实施的关键是需要建立较完备的数据集、设计精准识别算法和抓取控制策略.煤炭洗选过程中杂物的智能清除有利于推动煤炭行业的智能化转型、提高生产效率和产品...
简介:为了绘制黄白茨矿10#煤层和12#煤层的瓦斯地质图,根据现场测得的瓦斯含量数据,利用等值线绘制软件surfer8.0,采用Kriging网格化方法绘制了10#、12#煤层瓦斯含量等值线,并通过AutoCad2008输出,准确绘制10#煤层和12#煤层的瓦斯地质图。从绘制的煤层瓦斯地质图可以看出,黄白茨矿瓦斯含量基本上是随着深度的变化呈线性增加,井田东部瓦斯含量大于西部,埋藏越深,瓦斯含量越大,基本与已采区域相对瓦斯涌出情况相符合。采用Kriging网格化方法解决了空间连续性变化的属性非常不规则时较难准确绘制地质图的问题,因此Kriging网格化方法可以用来绘制煤层的瓦斯地质图。
简介:排水系统是煤矿井下的关键系统之一,对于排出煤矿井下涌水,保障煤矿安全生产具有重要意义.针对现有矿井排水系统智能化水平较低、系统耗电量较大等问题,提出一种矿井智能化排水系统,系统以可编程控制器PLC为核心,通过模糊控制算法分析井下水仓的液位和涌水变化率,得出排水系统的最佳运行方案,并将该模型结构输入到PLC中,结合排水主管路的流量、水泵压力等数据,达到水泵房智能运行与避峰填谷的目的,并通过随机森林算法解析水泵的振动信号,分析水泵的故障类型和健康状态.该系统有效地提升了井下排水效率,降低了设备磨损率,减少了煤矿排水系统电能消耗,对煤矿智能化排水系统设计具有一定的参考价值.
简介:为改善综放开采中存在的煤炭采出率低、围岩支护困难、瓦斯排放高和冲击地压频繁等问题,从错层位开采的基础原理、错层位开采灾害防治模型和工程应用等 3 个方面综述了错层位开采研究进展.总结了综放开采引发矿井灾害的原因为顶煤大范围、高强度垮落使得煤层和顶板中积聚的能量快速释放,连锁引发一系列围岩大变形、瓦斯超限和冲击地压等矿井灾害.阐述了 3 种基于错层位开采的矿井灾害防治模型,分别从围岩环境与塑性发育的角度阐述了错层位双巷联合支护机制;从孔隙率与流场浓度的角度阐述了错层位开采与综放开采的瓦斯浓度分布特性;从弹性应变能与耗散能的角度阐述了错层位开采与综放开采的能量分布特性.阐述了错层位开采技术实际工程应用,分别以华丰煤矿1411 工作面、镇城底煤矿 18111 工作面和老公营子煤矿 5(9)工作面为工程案例进行了分析,现场实测数据...