简介:摘要在计算机技术与信息技术发展背景下,图像识别技术备受关注。图像识别技术形成与更新成为主要发展趋势,且前景广阔,不管是信息搜集、医疗亦或是产品安全,均对图像识别技术进行了运用。所谓的图像识别技术,即借助计算机结合既定目标处理系统前端捕获图片,在日常生活与工作中较为常见,以条码识别和指纹识别为主。与此同时,在信息时代背景下,图像识别技术作为关键性技术,作为时代的衍生物,其存在的价值是为了让计算机代替人工对大量的物理信息进行处理。在计算机技术水平不断提升的前提下,我们更加深刻地认识到图像识别技术的价值。由此可见,基于人工智能深入研究并分析图像识别技术具有一定的现实意义。图像识别技术流程为先获取信息,再对信息进行预处理,通过信息特征抽取和选择过程,来实现分类决策与分类器设计功能。本文引入了图像识别技术,对该项技术的基本原理进行了分析,并研究了以人工智能为基础的图像识别。
简介:摘要:在计算机技术与信息技术发展背景下,图像识别技术备受关注。图像识别技术形成与更新成为主要发展趋势,且前景广阔,不管是信息搜集、医疗亦或是产品安全,均对图像识别技术进行了运用。所谓的图像识别技术,即借助计算机结合既定目标处理系统前端捕获图片,在日常生活与工作中较为常见,以条码识别和指纹识别为主。与此同时,在信息时代背景下,图像识别技术作为关键性技术,作为时代的衍生物,其存在的价值是为了让计算机代替人工对大量的物理信息进行处理。在计算机技术水平不断提升的前提下,我们更加深刻地认识到图像识别技术的价值。由此可见,基于人工智能深入研究并分析图像识别技术具有一定的现实意义。图像识别技术流程为先获取信息,再对信息进行预处理,通过信息特征抽取和选择过程,来实现分类决策与分类器设计功能。本文引入了图像识别技术,对该项技术的基本原理进行了分析,并研究了以人工智能为基础的图像识别。
简介:摘要:随着工业技术的快速发展,射线无损检测技术(Radiographic Testing,RT)作为一种重要的质量控制手段在各个工业领域中得到了广泛应用。射线无损检测图像包含大量的结构和缺陷信息,其准确识别对于保障产品质量和安全至关重要。然而,由于射线图像的复杂性和检测任务的高要求,传统的图像处理方法在识别精度和效率上存在明显不足。近年来,人工智能技术的迅猛发展,尤其是深度学习在图像识别中的成功应用,为射线无损检测图像的自动识别提供了新的可能性。本文将探讨基于人工智能的射线无损检测图像识别的研究现状、存在的问题以及未来的发展对策,以期为相关领域的研究和应用提供有价值的参考。