简介:小井眼完井已在全世界应用了几年。这种完井方式的目的是降低油气井成本(包括钻井与完井成本),并提高项目的经济效益。本文要介绍印尼西北爪哇海域(ONWJ)油田对油气井实行小井眼完井的结果。通过对以前油井性能的回顾,重点分析小井眼井在完井期间的问题、这些井的后续产量、可能实现的成本节约和将来各项采油修理作业好处的比较。到目前为止,已在ONWJ油田打了40多口小井眼井。这些井都是以3%”或2%”单管完井的。通过这种完井方式,实现了节省成本。但在完井时产生了一些其他的问题,有可能降低这些项目的经济效益。完井期间最经常出现的是固井作业后在尾管段发生水泥堵塞(占注水泥井总数的22.2%),这是由水泥顶替不佳引起的。这种情况通常出现在相对较深和井斜较大的井中。据已有经验,钻井作业过程的改善能减少完井期间的作业问题。总体结果表明,与小井眼有关的问题,相对于它的节约成本和有利于作业的潜力来说,还属于可接受的范围。在我们的实践中,小井眼单管井的产量与常规井并没有太大的差别。本文还介绍了为减少与小井眼单管井有关的事故而对作业所作的某些改进。
简介:从保证油气化探试样分析测试的质量出发,对油气化探分析测试的特殊性、实验室质量保证的基本条件、实验室为保证分析测试质量所采取的监控措施、分析测试结果可靠性评估以及与分析测试质量相关的因素等5个方面进行了阐述。这是笔者多年来在油气化探分析测试方面的经验总结,也凝结着油气化探分析工作者的辛勤劳动和集体智慧。同时,借鉴了兄弟单位的长处和金属化探测试方面的经验。通过这些年的实践,我们觉得这样的管理、要求与监控,可以将油气化探分析测试结果的相对误差控制在一个较小的范围,提高了分析测试结果的精密度和重复性,有利于油气藏的预测与解释。
简介:微生物生态系统可以依赖地球深处和深海火山口水-岩相互作用产生的氢气(H2)而得以生存。根据目前的估算,全球海洋岩石圈通过水-岩反应(水合作用)所产生的氢气量在1011mol/yr的量级。最近在对陆上地下前寒武纪岩石裂缝咸水的勘探中,人们发现了氢气富集程度类似于热液喷口和海底扩张中心的环境,并提出了在溶解的氢气量和水的辐射离解作用之间存在一定的联系。然而,在南非威特沃特斯兰德(Witwatersrand)盆地的一个深金矿中开展的区域氢气流量外推结果显示”,前寒武纪岩石因对全强氢气生产的贡献可以忽略不计(每年0.009×1011摩尔)。本文中我们对以往公开的和新近获得的前寒武纪岩石中的氢气浓度数据进行了汇总,发现人们以往低估了前寒武纪大陆岩石圈生成氢气的潜力。我们认为,出现这种情况的原因是,人们没有考虑其他的生氢反应(例如蛇纹岩化),而且缺乏有效的手段对在这些环境中测量的氢气生成速率进行换算,以便把前寒武纪地壳在全球大陆地壳表面积中的占比高达70%以上这一事实考虑在内。如果把通过辐射分解和水合反应生成的氢气考虑在内,我们估计,来自前寒武纪大陆岩石圈的氢气生成速率可以达到(0.36~2.27)×1011mol/yr,这个数值和海洋系统的氢气生成速率相当。
简介:在上一篇论文中,我们介绍了怀俄明州纳特罗纳县(Natrona)索尔特河(SaltCreek)油田CO2泡沫先导试验的实验室研究、油藏模拟和初步设计。在本文中,我们将介绍测试分析以及先导试验的初步结果,包括注入量剖面(injectionrateprofile)、产量数据分析、注入和生产测井、化学示踪剂、流线分析(streamlineanalysis)和油藏模拟。虽然索尔特河油田的CO2驱开发已经非常成功,但个别孤立的井网仍面临着CO2采出量大和CO2使用效率低下等问题,造成这些问题的原因可能是通过小规模高渗通道(裂缝、漏失层等)的流体窜流以及注入流体的重力上窜(over—ride)。为此,开展了泡沫先导试验,来测试利用CO2泡沫解决这些问题的可能性。注入量的变化(在恒定的地面注入压力下)是观察到的第一个现象:注入量降低了约40%,说明CO2在储层中的流度大幅度降低。在注入表面活性剂之前和之后开展了生产测井和注入测井,观察到一口生产并的产出剖面发生了变化。在注入表面活性剂之前和之后的注气和注水阶段还注入了化学示踪剂,结果显示CO2从小规模高渗通道(例如裂缝)转向(diverted)。对4口相邻生产井的生产数据开展了分析,结果显示产液量出现了确定性的增长,而且气一液比也相应地下降。流线分析结果表明,还实现了CO2的平面转向(arealdiversion)。文中最后介绍并讨论了油藏模拟预测结果。CO2驱采油已经成为很多水驱油田的标准EOR技术。通过改善驱替效率(例如利用CO2泡沫)可以大幅度提高经济效益。
简介:文中描述了美国怀俄明州纳特罗纳县(Natrona)索尔特河油田(SaltCreek)CO2泡沫先导试验的设计。CO2泡沫技术被确定为前景较好的候选技术,用于提高某些目标井网的波及效率。第二套WallCreek(WC2)砂岩地层是主要的产油层段,其净厚度大约为80ft,埋深大约为2200ft。先导试验区筛选过程的第一步详细研究了这个油田很多井网的地质特征、注采特征和经营情况。在此基础上选取了注入井位于井网中心的一个五点法井网,用于开展先导试验。开发出了一种表面活性剂配方,这个配方不仅能够在地层条件下产生所需的泡沫响应,而且还可以满足初步的经济和经营目标的要求。通过岩心驱替试验进一步研究了这种表面活性剂的泡沫特征。建立了历史拟合的油藏模拟模型,预测了在没有泡沫的情况下油田的开采动态,从而提供了与预期的泡沫响应进行对比的基线。然后利用泡沫的动态数据对该模型进行了标定,并利用标定后的模型指导这个先导试验项目的实施和油田开发动态的预测。这个先导试验项目已于2013年9月启动。文中对初步的试验结果进行了讨论。
简介:Miller和Kingfisher油田(联合王国北海)Brae组的深水砂岩油藏中石油侵入可减缓石英的胶结速度。这样尽管储层埋深达4km、温度高达120℃,但其孔隙度仍保持不变。油柱比水柱中石英的沉淀速率至少低两个数量级。在油藏经历了长时期(超过1500万年)烃类充填之后,油柱和水柱的石英胶结物的丰度和孔隙度存在明显差别。烃类物质填充得越早,孔隙度保存得越好。在油田开发期间,如果不考虑这种差别,则会导致对水柱中孔隙度和渗透率的过高估计,从而造成油层下倾方向注水井数量和注水方位的错误决策。在勘探过程中,石油对石英胶结的阻滞效应可能会导致在已发现有经济开采价值的区域性产层以下发现可观的储层。