简介:本文对开集D加上适当的条件,对Orlicz-Sobolev空间的性质进行了深入的研究,Orlicz-Sobolev函数可用在开集外为零的Lipschitz连续函数来逼近,将结果以Hardy型不等式的形式表示,对解决偏微分方程问题起了很重要的作用.
简介:最后S.Liu[2]和笔者[4]得到了两个Hermite矩阵的Khatri-Rao乘积的一些不等式。我们以两种方式来推广这些结果。首先,将结论推广到任意有限个Hermite矩阵的Khatri-Rao乘积;其次,给出了相应不等式的等式成立的充分必要条件。
简介:考虑了一类p-Laplacian拟线性椭圆变分不等式问题,通过运用优化理论中的补偿法和Clark次微分性质,研究了这类椭圆变分不等式解的存在性.
简介:根据Cauchy—Schwarz不等式,得到了C^2(a,b])空间中函数的二阶导数的若干新积分不等式.
简介:利用平方凸函数与凸函数的关系,证明了平方凸函数单侧导数的存在性和单调性,建立了平方凸函数与其单侧导数的不等式关系.在此基础上,给出平方凸函数定积分已有下界的改进和新的下界.给出由平方凸函数Hermite-Hadamard型不等式生成的差值的估计.
简介:本文研究Hardy-Lorentz-Karamata空间中鞅的凹函数不等式,具体而言,设Φ是一凹函数,证明了若干关于鞅的极大函数M(f)、均方函数S(f)和条件均方函数s(f)之间的"Φ-Lp,q,b"型不等式.为了获得这些结果,建立了一些新的原子分解定理.
简介:n×m非负实数矩阵的每列元素之和的几何平均值不小于其每行元素的几何平均值之和,运用它给出了一类和(或积)式不等式的简捷证明,也导出了著名不等式:Cauchy不等式、Holder不等式等的推广形式的积分不等式。
简介:我们将得到广义凸空间上VonNeumann-Fan型supinfsup不等式,我们的结果对文[1]和[2]中的相应结论进行了改进和一般化.