简介:研究了粘弹性夹层圆板的自由振动特性.基于经典弹性薄板理论和Kelvin-Voigt粘弹性本构方程,建立了粘弹性夹层圆板振动控制方程.采用分离变量法导出了粘弹性夹层圆板的自然频率及振型解析表达式,计算了固支和简支粘弹性夹层圆板的自然频率,并与有限元计算结果进行比较;讨论了粘弹性夹层圆板的夹心层比率对自然频率及衰减系数的影响.研究表明:(1)随着夹心层厚度的增大,系统频率先增大后减小,高阶时该趋势表现更为明显;(2)随着夹心层厚度的增大,衰减系数一直增大,高阶时该趋势表现更为明显.
简介:从非线性动力学角度分析了Nakamura模型中各参数对周期振动的影响,揭示了人行桥侧振过程中各因素:如桥上行人重量,同步人群的比例,行人同步与桥自振频率之间的关系描述函数等如何影响桥侧振的振幅.理论分析和实测数据发现:桥侧向振幅过大时,描述行人产生的侧向力与桥频率关系的函数不一定为1.0,且完全有可能远离1.0.
简介:随着MEMS技术工艺的发展,微型结构在工程领域的应用越来越广泛.对于微型结构,经典连续介质力学理论的本构关系中不包含任何特征长度尺度,不能反映结构在微米尺度下的尺寸效应.本文基于VonKarman大变形理论和一阶剪切变形理论,把考虑尺寸效应的应变梯度理论推广至微型Mindlin板的非线性问题.分别计算微结构的应变能,包括宏观变形应变能和微观变形应变能两部分,结合微型Mindlin板结构的动能及外力功,代入Hamilton原理,得到了微型Mindlin板在大变形情况下的非线性动力学方程及边界条件.