简介:本文利用复杂网络理论,采用无标度网络模拟现实的组织模型,并研究知识在这个模型中的传播演化问题。通过模拟发现:知识在组织内的传播,首先和知识传播成功的概率有关,成功传播的概率越高.知识越容易扩充到整个组织系统,但随着时间的延续,系统拥有知识的人趋近于某一确定值;其次知识在传播速度上明显表现出钟状形态,开始传播速度较低,然后传播速度逐渐加快,达到最大值,最后逐渐下降;第三组织规模对知识传播周期基本没有影响。第四当组织内存在拒绝学习知识者,则知识在系统内传播速度将大幅下降,所需周期增加明显;第五考虑知识拥有者因遗忘而退化和知识抗拒者因观念转变而进化的情景,发现遗忘对组织的传播速度的不利影响要超过进化带来的有利影响,因此组织要重点用好知识拥有者,在使用中强化知识记忆,防止知识遗忘。
简介:存在监控冲突的天基中段预警传感器调度优化是一个动态、高维、复杂多约束的非线性优化问题,其解空间的高维度与状态复杂性直接制约了智能优化算法的运用。本文以任务分解与任务复合优先权计算为基础,通过二级分离机制将解空间维度与状态复杂性降低至适于连续蚁群(continuousant-colonyoptimization,CACO)处理的全局优化形态,构建出相应的优化子路径集.在此基础上,针对监控冲突导致的状态变化特性,从局部搜索递进与募集的角度提出适于传感器调度优化的MG-DCACO(doubledirectioncontinuousant-colonyoptimizationbasedmassrecruitmentandgrouprecruitment)算法,成功将智能优化算法应用于基于低轨星座的天基中段预警中.最后对算法的收敛性进行论证,并通过与已有规则调度算法的对比得出MG-DCACO算法可获得优于规则调度算法的全局最优解。
简介:ABC管理是80/20原则在仓储管理中的一种应用,能有效提高企业效益。目前的研究很少分析ABC管理的改善程度、各种应用策略间的影响和整体作用,而且国内仓储运作和国外存在较大的差异。本文基于一种结合国内仓储实践、具有普遍性和实用性的ABC管理模式,建立ABC管理对作业效率改善程度的测度模型。通过对模型假设的实证和模型分析表明:仓储配送中ABC管理的实质是对劳动时间这个可变资源进行重点管理,利用储位分配策略缩短部分订单的拣货路径以减少订单拣货时间,利用库存控制和订货补充策略提高优化作业订单所占的比重,共同作用提高作业效率。最后讨论了ABC管理在国内大规模推广的原因。