学科分类
/ 5
98 个结果
  • 简介:研究带无穷多个部件的,由一个可靠机器,一个不可靠机器与一个缓冲库构成的系统主算子在左半复平面中的特征值,证明2√λη1μη2-λη1-μη2是该主算子的几何重数为1的一个特征值.

  • 标签: C0-半群 特征值 几何重数
  • 简介:Thispaperdiscussestheintervalestimationsmethodfortheparametersandotherreliabilitycharactersofathree-poxameterWeibulldistribution.Accordingtothefiducialdistrlbutiontheoryoftheparameter,theauthorpresentstheconfidenceintervalsoftheporameters,thereliabilityandthereliablelife.Anexamplemadsimulationresultsaregiven.Itisshownthatthemethodpresentedinthispaperispracticableandworthnoticing.

  • 标签: 三参数Weibull分布参数 可靠性指标 区间估计 数理统计
  • 简介:研究了一类具有阶段结构的捕食一食饵系统,通过对模型进行定性分析,给出了系统的持久性、全局渐近稳定性的充分条件.

  • 标签: 捕食系统 阶段结构 持久性 全局稳定
  • 简介:对一类三阶非线性系统构造出了较好的Lyapunov函数,得到其零解全局渐近稳定的充分性准则,而且去掉了一般要求Lyapunov函数具有无穷大这个较强的条件,只要求系统正半轨线有界,所得结果包含并改进了旧有的结果.

  • 标签: 非线性系统 全局渐近稳定 LYAPUNOV函数
  • 简介:系统研究了具有急性和慢性两个阶段的MSIS流行病模型.由两节构成,第1节建立和研究了具有急慢性阶段的MSIS流行病模型;第2节在第1节的基础上建立和研究了具有慢性病病程的MSIS流行病模型.第1节的模型是四个常微分方程构成的方程组.第2节的模型既含有常微分方程,又含有偏微分方程.运用微分方程和积分方程中的理论和方法,得到了这两个模型再生数()0的表达式.证明了当()0<1时,无病平衡态是全局渐近稳定性,给出了各模型地方病平衡态的存在性和稳定性条件.

  • 标签: 流行病模型 病程结构 再生数 平衡点 稳定性 急慢性阶段
  • 简介:研究了具有扭转耦合效应的复合薄壁梁黎斯基的性质以及指数稳定性.首先证明该系统决定算子的预解式是紧的,且可生成群.其次,通过对该系统算子谱的渐近分析,证明了除至多有限个本征值外,其算子的谱是单重可分离的.特殊地,我们获得了自由系统的频率渐近表达式,因而利用克尔德什定理,证明了在希尔伯特状态空间中算子广义本征函数列的完备性.最后,结合黎斯基的性质及算子谱的分布证明了该系统的指数稳定性.

  • 标签: 复合薄壁梁 渐近本征值 黎斯基 指数稳定性
  • 简介:我们在无限维空间中研究微分包含的生存W-单调轨道的存在性,基于Zom引理,我们给出了—个逼近方法,在较弱的条件下得到了一个存在性定理,其特殊情形则包含了已有的生存定理和微分方程理论中的若干结果.作为应用,我们首先研究了微分包含生存解的整体存在性,得到了整体生存理.然后我们研究了微分包含解的稳定性,得到一些新的结果。

  • 标签: 微分 单调 BANACH空间 无限维空间 存在性定理 引理
  • 简介:考虑—个四缀块模型,其中一缀块里有三个竞争种群.另外三个分别是它们的避难所.并且种群能在争缀块和各自的避难所间相互扩散.在一定的条件下.我们给出了此模型的持续生存,周期性和全局稳定性.

  • 标签: 竞争系统 非自治 全局稳定性 持续生存 周期性 条件
  • 简介:延迟微分代数方程(DDAEs)广泛出现于科学与工程应用领域.本文将多步Runge-Kutta方法应用于求解线性常系数延迟微分代数方程,讨论了该方法的渐近稳定性.数值试验表明该方法对求解DDAEs是有效的.

  • 标签: 延迟微分代数方程 多步RUNGE-KUTTA方法 渐近稳定性
  • 简介:本文利用正规则型理论讨论了一类二维离散动力系统的动力学性质,分析了其正平衡点的稳定性,并讨论了Neimark—Sacker分岔稳定性与方向。通过数值模拟验证了所得结果的正确性。

  • 标签: 离散动力系统 稳定性 NEIMARK-SACKER分岔
  • 简介:建立了一类具隔离和时滞的肺结核系统,运用脉冲时滞微分方程理论.运用脉冲时滞微分方程理论,得到了两个临界值R_1和R_2,当R_1〈1时,无病周期解全局吸引;当R_2〉1时,疾病将持续.

  • 标签: 隔离 时滞 潜伏期 全局吸引 持久性
  • 简介:本文首先用偏微分方程描述了一类带生长函数的具有林龄结构的植物病虫害模型;其次主要利用算子理论、积分方程理论证明了模型解的存在唯一性,利用对应的特征方程讨论了系统平衡态的稳定性.

  • 标签: 植物病虫害 存在性 平衡态 稳定性
  • 简介:本文研究了无完美服务无等待的M/G/1排队系统的指数稳定性.首先运用预解正算子理论,证得该系统主算子和系统算子均为预解正算子.然后对主算子的谱界进行估值,并得到主算子的谱界与各修复率平均值的最小值互为相反数这一结论.进而利用共尾理论证明主算子谱界等于其增长界.最后,通过分析系统算子的谱分布,得到了系统的指数稳定性.

  • 标签: 无完美服务无等待 预解正算子 共尾 指数稳定性
  • 简介:本文研究一类具有状态时滞和输入时滞的时变时滞线性中立型系统.首先,通过选取合适的Lya—punov—Krasovskii泛函。应用LMI方法和Lyapunov—Krasovskii稳定性定理对时滞相关的系统进行稳定性分析,并设计了相应的控制器.改进了时不变时滞线性系统方面的一些结果.最后用实例验证所得到结果.

  • 标签: 时滞系统 Lyapunov—Krasovskii泛函鲁棒稳定性线性矩阵不等式(LMI) 反馈控制