简介:研究了—(p,q)-Laplacian拟线性椭圆方程组.当连续函数V和W在两种情形下,利用Moser迭代技巧和Ljusternik-Schnirelmann畴数理论,建立了方程组正解的存在性和多重性结果.
简介:本文研究常微分方程组情形的Ambrosetti-Prodi型问题.在非线性项超线性,凸性等条件下.得出随着参数的变化。问题无解,有唯一解,至少有两解的结论。
简介:在求解常系数线性微分方程组时,关键是基解矩阵的计算.给出了利用哈密顿一凯莱定理计算基解矩阵的一种方法,并通过实例说明了这种方法的特点和在简化计算方面的有效性.
简介:引进一类新的具有非紧值映射的广义拟-似变分包含组.使用η-近似映射技巧,证明一个新的N-步迭代算法的收敛性和解的存在性.结果改进和推广了近期一些熟知的结果.
简介:AsacontinuationofpartIofthepaperunderthesametitle,wedevelopgeneralmonotonicenclosuremethodsforthecouplesystemsofthesplittingequations{x=G([x]a,[x]b,[y]c)y=G([y]a,[y]b,[x]c),whichmodelsthesystemofequationsassociatedwithhybridandaaynchronottsmonotonicityaswellasconvexity.Theresultingalgorithmsandconvergencetheoremsgeneralizeandunifyvariousknownmethodsandmonotonicenclosuretheorentsestablishedbyotherauthors.