简介:本文讨论形如d/dt(x(t)+D(t)x(t-k)=f(t,x(t),x(t-h),u(t))的非线性中立型控制系统函数能控性,给出该类系统的函数能控性和零函数能控性的判定定理,所得结果在实际系统的设计、分析等方面是非常实用的。
简介:本文提出一个新的预条件子,用共轭梯度法求解对称正定的Teoplitz型线性方程组.该预处理子构造简单,易于实施快速傅里叶变换.理论和数值实验显示,我们的预处理子与T.Chan预处理子收敛性相近.
简介:本文对开集D加上适当的条件,对Orlicz-Sobolev空间的性质进行了深入的研究,Orlicz-Sobolev函数可用在开集外为零的Lipschitz连续函数来逼近,将结果以Hardy型不等式的形式表示,对解决偏微分方程问题起了很重要的作用.
简介:AKekuléanbenzenoidsystemisonewithKekuléstructures.Afixeddouble(single)bondofaKekuléanbenzenoidsystemHisanedgebelongingtoall(none)oftheKekuléstructuresofH.EssentiallydisconnectedsystemsareKekuléanpericondensedbenzenoidsystemswithsomefixeddoubleorsinglebonds.InthispaperanecessaryandsufficientconditionforaKekuléanbenzenoidsystemtobeanessentiallydisconnectedbenzenoidsystemwithfixeddoublebondsisgivenandrigorouslyproved.
简介:在不要求C0-半群为紧半群的前提下.利用函数e^-λt(其中λ〉0是常数)和Monch不动点定理,在更广泛的条件下,得到了Banach空间中一类半线性混合型发展方程初值问题的整体mild解和正mild解,本质上改进和推广了已有相关结果.
简介:本文引入契贝晓夫多项式作为基函数,利用Galerkin方法研究了一类Fredholm-Volterra积分方程的数值解,并进行了数值模拟.结果表明,该方法可行且有效.
简介:本文研究了一种修正的Shepard—Lagrange型插值算子在Orlicz空间内的逼近性质,证明了它在Orlicz空间内的有界性,利用光滑模、Hardy—Littlewood极大函数、N函数的凸性及Jensen不等式给出了该算子在Orlicz空间内的逼近度估计.